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Derivative-free optimization (DFO): what and when?

What is DFO?

Solve an optimization problem

min f(z)

using function values but not derivatives (classical or generalized).

When do we use DFO?
@ Derivatives are not available even though f may be smooth.

@ “not available”: the evaluation is impossible or too expensive.
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Applications of DFO

Ship Design Machine Learning Geosciences

@ Campana, Diez, lemma, Liuzzi, Lucidi, Rinaldi, and Serani, Derivative-free
global ship design optimization using global/local hybridization of the
DIRECT algorithm. Optim. Eng., 2016.

@ Ghanbari and Scheinberg, Black-box optimization in machine learning with
trust region based derivative free algorithm. arXiv:1703.06925, 2017.

@ Oliver, Cartis, Kriest, Tett, and Khatiwala, A derivative-free optimisation
method for global ocean biogeochemical models. Geosci. Model Dev., 2022.
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Two classes of DFO methods

@ Model-based methods based on
» trust region
» line search

@ Direct-search methods based on
> simplex

» directions
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Model-based methods v.s. Direct-search methods

Model-based Direct-search
Performance good less satisfactory
Implementation | complicated | relatively simple

© Model-based methods:
» The optimization process is guided by models.
» The coupling between modeling and optimization makes the
implementation complicated.
@ Direct-search methods:
» lterates are decided by comparing the function values of samples.
» No need to construct models.
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An example of model-based methods: NEWUOA

@ A model-based DFO solver for unconstrained problems

Developed by M.J.D. Powell

Widely used by engineers and scientists
A popular benchmark in the DFO community *
The modernized version: PRIMA (https://github.com/libprima)

!Benchmarking derivative-free optimization algorithms, Moré, J. J. and Wild, S. M.,

SIAM Journal on Optimization, 2009.
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NEWUOA: implementation
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Framework of NEWUOA

and understanding are HARD
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NEWUOA: implementation and understanding are HARD

Powell (2006)

The development of NEWUOA has taken nearly
three years. The work was very frustrating ..

Framework of NEWUOA
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A much simpler algorithm: Direct Search (DS)

Algorithm 1: DS based on sufficient decrease

Input: 20 € R", 0 <6 <1<+, ag > 0, a forcing function p,
and a search direction set D C R".
for k=0,1,... do
if f(zr + ardr) < f(zr) — p(ag) for some dj, € D then
| Set xpy1 = xf + agdy and agy1 = yag
else
| Set zp11 =z and apq = Ooy,

N.B.: The MADS family is another important class of direct-search
methods based on integer lattices without imposing sufficient decrease.
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Unsatisfactory performance of DS
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Unconstrained CUTEst problems, 6 < n < 200
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Performance of the new method we will introduce
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Flaws of DS?

Algorithm 1: DS based on sufficient decrease (recapped)

Input: g e R*, 0 <0 <1<+, ap > 0, a forcing function p,
and a search direction set D C R".
for k=0,1,... do
if f(zx + ardr) < f(zr) — p(ag) for some di, € D then
| Set zpy1 = xp + agdy and ag1 = Yo
else

| Set zp11 =z and apq = Ooy,
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An illustration of DS

D= {617 —€1,€2, _62}
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An illustration of DS
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An illustration of DS

C
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An illustration of DS
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An illustration of DS

12/ 29



An illustration of DS

It is not reasonable to have one single stepsize for all directions!
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An improved direct-search method?
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An improved direct-search method?
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An improved direct-search method?

Dl = {61, —61} and DQ = {62, —62}
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An improved direct-search method?

C
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An improved direct-search method?
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An improved direct-search method?

13/ 29



Blockwise direct-search method

Algorithm 2: Blockwise Direct Search (BDS)

Input: 20 € R*, 0< <1<, a},...,a8" € (0,00), a forcing

function p, and a search direction set D = U™ D' C R™.

for k=0,1,... do
Set y; = xy,
fori=1,...,m do
if f(y). +apd) < f(yp) — plaj) for some dj € D' then
| Sety "' =yl +aldi and of | = yo
else '
| Sety,"' =y and af; = fa,

1

Set w1 =y "
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Blockwise direct-search method

Algorithm 2: Blockwise Direct Search (BDS)

Input: 20 € R*, 0< <1<, a},...,a8" € (0,00), a forcing

function p, and a search direction set D = U™ D' C R™.

for k=0,1,... do
Set y; = xy,
fori=1,...,m do
if f(y, + agdy) < f(yp,) — plag) for some dj € D' then
| Setyi™ =yl +ald; and o}, = yal
else
| Sety; ' =y and af | = bo

1

Set w1 =y "
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The difference from DS

@ The only difference between BDS and DS: blocks
e No backtracking/extrapolating line search like in

» Lucidi and Sciandrone, SIAM J. Optim., 2002
» Brilli, Kimiaei, Liuzzi, and Lucidi, arXiv:2302.05274, 2023
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“Blocking”: A classic idea

It is obviously a classic idea to divide search directions into blocks and
treat them differently.

@ Blockwise Coordinate Descent

@ Audet, Le Digabel, and Tribes, Dynamic scaling in the mesh adaptive
direct search algorithm for blackbox optimization, Optim. Eng., 2015
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Flexibility of the framework

@ The search direction set: a positive spanning set.
@ The division of blocks: any (“fits” the problem as much as possible).

@ The scheme of visiting blocks: cyclic (Gauss-Seidel), Jacobi, random.
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Flexibility of the framework

@ The search direction set: a positive spanning set.
@ The division of blocks: any (“fits” the problem as much as possible).

@ The scheme of visiting blocks: cyclic (Gauss-Seidel), Jacobi, random.

Our implementation takes the following setting as the default:
e D={ej,—€1,...,n,—Cn}
(] DZ = {ei, —ei}

@ Gauss-Seidel scheme
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Comparison between BDS and DS
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Comparison betwen BDS and NEWUOA (recapped)
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Comparison between BDS and FD-BFGS
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e FD-BFGS: Forward-finite-difference BFGS (fminunc in MATLAB).
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Performance of BDS under noise

Observed function value:

f(x) = f(x)[L + or(z)],

where r(z) ~ N(0,1).
In our experiments:

@ problem set: unconstrained problems from CUTEst
@ dimensions: 6 < n < 200

e noise level: o = 1073

@ budget: 500n function evaluations

@ number of random experiments: 5
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Comparison between BDS and DS
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Comparison between BDS and NEWUOA
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Comparison between BDS and FD-BFGS (fminunc)
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Comparison between BDS and adaptive FD-BFGS
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BDS v.s. DS (under rotation)

Performance profile
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f(z) = f(Uz)[1 + or(z)], where U is a random orthogonal matrix
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BDS v.s. NEWUOA (under rotation)
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BDS v.s. adaptive FD-BFGS (under rotation)
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Is BDS convergent?

@ The analysis of cyclic methods is challenging.

o Powell’s non-convergent example of cyclic coordinate descent method .

- A

g

limiting behavior of Powell's example

@ We do not know whether BDS is convergent yet.

@ Is it possible that the vanilla version of BDS is not convergent?

20n search directions for minimization algorithms, Mathematical programming, 1973,

Powell, M. J. D.
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Conclusions

@ Blockwise Direct Search (BDS) is a substantial improvement over the
classical direct search method based on sufficient decrease

@ BDS is robust under noise without any noise-handling techniques
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Future work

e Convergence and worst-case complexity (an adapted framework?)
e Make use of the existing iterates (finite difference or interpolation)

e Extend our implementation to other languages (Python, Julia, etc.)

|j 101 S open-source and easy to use
1
I.ﬁ E; @ tested continuously via GitHub Actions
[ ; 1; @ tested under different platforms
im

BDS on GitHub

Merci Beaucoup !
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https://github.com/blockwise-direct-search
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