
Blockwise Direct-Search Methods

Haitian Li

The Hong Kong Polytechnic University

Joint work with Zaikun Zhang

ISMP 2024, Montreal, Canada

Blockwise Direct-Search Methods

Zaikun Zhang (replacing Haitian Li)

The Hong Kong Polytechnic University

Joint work with Haitian Li

ISMP 2024, Montreal, Canada

Derivative-free optimization (DFO): what and when?

What is DFO?
Solve an optimization problem

min
x∈Rn

f(x)

using function values but not derivatives (classical or generalized).

When do we use DFO?
Derivatives are not available even though f may be smooth.
“not available”: the evaluation is impossible or too expensive.

2 / 29

Applications of DFO

Ship Design Machine Learning Geosciences

1 Campana, Diez, Iemma, Liuzzi, Lucidi, Rinaldi, and Serani, Derivative-free
global ship design optimization using global/local hybridization of the
DIRECT algorithm. Optim. Eng., 2016.

2 Ghanbari and Scheinberg, Black-box optimization in machine learning with
trust region based derivative free algorithm. arXiv:1703.06925, 2017.

3 Oliver, Cartis, Kriest, Tett, and Khatiwala, A derivative-free optimisation
method for global ocean biogeochemical models. Geosci. Model Dev., 2022.

3 / 29

Two classes of DFO methods

1 Model-based methods based on
▶ trust region
▶ line search

2 Direct-search methods based on
▶ simplex
▶ directions

4 / 29

Model-based methods v.s. Direct-search methods

Model-based Direct-search
Performance good less satisfactory
Implementation complicated relatively simple

1 Model-based methods:
▶ The optimization process is guided by models.
▶ The coupling between modeling and optimization makes the

implementation complicated.
2 Direct-search methods:

▶ Iterates are decided by comparing the function values of samples.
▶ No need to construct models.

5 / 29

An example of model-based methods: NEWUOA

A model-based DFO solver for unconstrained problems
Developed by M.J.D. Powell
Widely used by engineers and scientists
A popular benchmark in the DFO community 1

The modernized version: PRIMA (https://github.com/libprima)

1Benchmarking derivative-free optimization algorithms, Moré, J. J. and Wild, S. M.,
SIAM Journal on Optimization, 2009.

6 / 29

NEWUOA: implementation and understanding are HARD

Framework of NEWUOA

Powell (2006)
The development of NEWUOA has taken nearly
three years. The work was very frustrating …

7 / 29

NEWUOA: implementation and understanding are HARD

Framework of NEWUOA

Powell (2006)
The development of NEWUOA has taken nearly
three years. The work was very frustrating …

7 / 29

A much simpler algorithm: Direct Search (DS)

Algorithm 1: DS based on sufficient decrease

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α0 > 0, a forcing function ρ,
and a search direction set D ⊂ Rn.

for k = 0, 1, . . . do
if f(xk + αkdk) < f(xk)− ρ(αk) for some dk ∈ D then

Set xk+1 = xk + αkdk and αk+1 = γαk

else
Set xk+1 = xk and αk+1 = θαk

N.B.: The MADS family is another important class of direct-search
methods based on integer lattices without imposing sufficient decrease.

8 / 29

Unsatisfactory performance of DS

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

DS

NEWUOA

(a) τ = 10−3

0 2 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

DS

NEWUOA

(b) τ = 10−5

Unconstrained CUTEst problems, 6 ≤ n ≤ 200

9 / 29

Performance of the new method we will introduce

0 1 2 3
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

our method

NEWUOA

(a) τ = 10−3

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

our method

NEWUOA

(b) τ = 10−5

Unconstrained CUTEst problems, 6 ≤ n ≤ 200

10 / 29

Flaws of DS?

Algorithm 1: DS based on sufficient decrease (recapped)

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α0 > 0, a forcing function ρ,
and a search direction set D ⊂ Rn.

for k = 0, 1, . . . do
if f(xk + αkdk) < f(xk)− ρ(αk) for some dk ∈ D then

Set xk+1 = xk + αkdk and αk+1 = γαk

else
Set xk+1 = xk and αk+1 = θαk

11 / 29

An illustration of DS

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

12 / 29

An illustration of DS

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

12 / 29

An illustration of DS

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

12 / 29

An illustration of DS

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

12 / 29

An illustration of DS

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

12 / 29

An illustration of DS

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

12 / 29

An illustration of DS

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

12 / 29

An illustration of DS

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

12 / 29

An illustration of DS

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

12 / 29

An illustration of DS

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

12 / 29

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

13 / 29

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

13 / 29

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

13 / 29

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

13 / 29

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

13 / 29

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

13 / 29

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

13 / 29

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

13 / 29

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

13 / 29

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

13 / 29

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

13 / 29

Blockwise direct-search method

Algorithm 2: Blockwise Direct Search (BDS)
Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α1

0, . . . , α
m
0 ∈ (0,∞), a forcing

function ρ, and a search direction set D = ∪m
i=1Di ⊂ Rn.

for k = 0, 1, . . . do
Set y1k = xk
for i = 1, . . . ,m do

if f(yik + αi
kd

i
k) < f(yik)− ρ(αi

k) for some dik ∈ Di then
Set yi+1

k = yik + αi
kd

i
k and αi

k+1 = γαi
k

else
Set yi+1

k = yik and αi
k+1 = θαi

k

Set xk+1 = ym+1
k

14 / 29

Blockwise direct-search method

Algorithm 2: Blockwise Direct Search (BDS)
Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α1

0, . . . , α
m
0 ∈ (0,∞), a forcing

function ρ, and a search direction set D = ∪m
i=1Di ⊂ Rn.

for k = 0, 1, . . . do
Set y1k = xk
for i = 1, . . . ,m do

if f(yik + αi
kd

i
k) < f(yik)− ρ(αi

k) for some dik ∈ Di then
Set yi+1

k = yik + αi
kd

i
k and αi

k+1 = γαi
k

else
Set yi+1

k = yik and αi
k+1 = θαi

k

Set xk+1 = ym+1
k

15 / 29

The difference from DS

The only difference between BDS and DS: blocks
No backtracking/extrapolating line search like in
▶ Lucidi and Sciandrone, SIAM J. Optim., 2002
▶ Brilli, Kimiaei, Liuzzi, and Lucidi, arXiv:2302.05274, 2023

16 / 29

“Blocking”: A classic idea

It is obviously a classic idea to divide search directions into blocks and
treat them differently.

Blockwise Coordinate Descent
Audet, Le Digabel, and Tribes, Dynamic scaling in the mesh adaptive
direct search algorithm for blackbox optimization, Optim. Eng., 2015

17 / 29

Flexibility of the framework

The search direction set: a positive spanning set.
The division of blocks: any (“fits” the problem as much as possible).
The scheme of visiting blocks: cyclic (Gauss-Seidel), Jacobi, random.

Our implementation takes the following setting as the default:
D = {e1,−e1, . . . , en,−en}
Di = {ei,−ei}
Gauss-Seidel scheme

18 / 29

Flexibility of the framework

The search direction set: a positive spanning set.
The division of blocks: any (“fits” the problem as much as possible).
The scheme of visiting blocks: cyclic (Gauss-Seidel), Jacobi, random.

Our implementation takes the following setting as the default:
D = {e1,−e1, . . . , en,−en}
Di = {ei,−ei}
Gauss-Seidel scheme

18 / 29

Comparison between BDS and DS

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

DS

(a) τ = 10−3

0 2 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

DS

(b) τ = 10−5

Unconstrained CUTEst problems, 6 ≤ n ≤ 200

19 / 29

Comparison betwen BDS and NEWUOA (recapped)

0 1 2 3
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

NEWUOA

(a) τ = 10−3

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

NEWUOA

(b) τ = 10−5

Unconstrained CUTEst problems, 6 ≤ n ≤ 200

20 / 29

Comparison between BDS and FD-BFGS

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

FD-BFGS

(a) τ = 10−3

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

FD-BFGS

(b) τ = 10−5

Unconstrained CUTEst problems, 6 ≤ n ≤ 200

FD-BFGS: Forward-finite-difference BFGS (fminunc in MATLAB).

21 / 29

Performance of BDS under noise

Observed function value:

f̃(x) = f(x)[1 + σr(x)],

where r(x) ∼ N (0, 1).
In our experiments:

problem set: unconstrained problems from CUTEst
dimensions: 6 ≤ n ≤ 200

noise level: σ = 10−3

budget: 500n function evaluations
number of random experiments: 5

22 / 29

Comparison between BDS and DS

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

DS

τ = 10−1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

DS

τ = 10−3

23 / 29

Comparison between BDS and NEWUOA

0 1 2 3
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

NEWUOA

τ = 10−1

0 2 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

NEWUOA

τ = 10−3

23 / 29

Comparison between BDS and FD-BFGS (fminunc)

0 1 2 3
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

FD-BFGS

τ = 10−1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

FD-BFGS

τ = 10−3

23 / 29

Comparison between BDS and adaptive FD-BFGS

0 1 2 3
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

FD-BFGS

τ = 10−1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

FD-BFGS

τ = 10−3

Adaptive stepsize for FD-BFGS: h =
√

(max |f |, 1)σ

23 / 29

BDS v.s. DS (under rotation)

0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

DS

(a) τ = 10−1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

DS

(b) τ = 10−3

f̃(x) = f(Ux)[1 + σr(x)], where U is a random orthogonal matrix

24 / 29

BDS v.s. NEWUOA (under rotation)

0 2 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

NEWUOA

(c) τ = 10−1

0 2 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

NEWUOA

(d) τ = 10−3

f̃(x) = f(Ux)[1 + σr(x)], where U is a random orthogonal matrix

25 / 29

BDS v.s. adaptive FD-BFGS (under rotation)

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

BDS

FD-BFGS

(e) τ = 10−1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

FD-BFGS

(f) τ = 10−3

f̃(x) = f(Ux)[1 + σr(x)], where U is a random orthogonal matrix
Adaptive stepsize for FD-BFGS: h =

√
(max |f |, 1)σ

26 / 29

Is BDS convergent?

The analysis of cyclic methods is challenging.
Powell’s non-convergent example of cyclic coordinate descent method 2.

limiting behavior of Powell’s example

We do not know whether BDS is convergent yet.
Is it possible that the vanilla version of BDS is not convergent?

2On search directions for minimization algorithms, Mathematical programming, 1973,
Powell, M. J. D.

27 / 29

Conclusions

1 Blockwise Direct Search (BDS) is a substantial improvement over the
classical direct search method based on sufficient decrease

2 BDS is robust under noise without any noise-handling techniques

28 / 29

Future work

Convergence and worst-case complexity (an adapted framework?)
Make use of the existing iterates (finite difference or interpolation)
Extend our implementation to other languages (Python, Julia, etc.)

BDS on GitHub

open-source and easy to use
tested continuously via GitHub Actions
tested under different platforms

Merci Beaucoup !

29 / 29

https://github.com/blockwise-direct-search

References I

▶ C. Audet and J. E. Dennis Jr.
Analysis of generalized pattern searches.
SIAM J. Optim., 13:889–903, 2002.

▶ C. Audet and J. E. Dennis Jr.
Mesh adaptive direct search algorithms for constrained optimization.
SIAM J. Optim., 17:188–217, 2006.

▶ C. Audet and D. Orban.
Finding optimal algorithmic parameters using derivative-free
optimization.
SIAM J. Optim., 17:642–664, 2006.

▶ A. S. Bandeira, K. Scheinberg, and L. N. Vicente.
Convergence of trust-region methods based on probabilistic models.
SIAM J. Optim., 24:1238–1264, 2014.

References II

▶ E. F. Campana, M. Diez, U. Iemma, G. Liuzzi, S. Lucidi, F. Rinaldi, and
A. Serani.
Derivative-free global ship design optimization using global/local
hybridization of the direct algorithm.
Optim. Eng., 17:127–156, 2016.

▶ N. I. M. Gould, D. Orban, and Ph. L. Toint.
CUTEst: a constrained and unconstrained testing environment with safe
threads for mathematical optimization.
Comput. Optim. Appl., 60:545–557, 2015.

▶ S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang.
Direct search based on probabilistic descent.
SIAM J. Optim., 25:1515–1541, 2015.

References III

▶ T. Gu, W. Li, A. Zhao, Z. Bi, X. Li, F. Yang, C. Yan, W. Hu, D. Zhou,
T. Cui, X. Liu, Z. Zhang, and X. Zeng.
BBGP-sDFO: Batch Bayesian and Gaussian process enhanced subspace
derivative free optimization for high-dimensional analog circuit
synthesis.
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 43:417–430,
2023.

▶ T. G. Kolda, R. M. Lewis, and V. Torczon.
Optimization by direct search: New perspectives on some classical and
modern methods.
SIAM Rev., 45:385–482, 2003.

▶ S. Oliver, C. Cartis, I. Kriest, S. F. B. Tett, and S. Khatiwala.
A derivative-free optimisation method for global ocean biogeochemical
models.
Geosci. Model Dev., 15:3537–3554, 2022.

References IV

▶ M. Porcelli and Ph. L. Toint.
BFO, a trainable derivative-free brute force optimizer for nonlinear
bound-constrained optimization and equilibrium computations with
continuous and discrete variables.
ACM Trans. Math. Software, 44:6:1–6:25, 2017.

▶ M. J. D. Powell.
On search directions for minimization algorithms.
Math. Program., 4:193–201, 1973.

▶ M. J. D. Powell.
The NEWUOA software for unconstrained optimization without
derivatives.
In G. Di Pillo and M. Roma, editors, Large-scale Nonlinear
Optimization, pages 255–297. Springer, Boston, 2006.

	Classical direct-search methods
	Blockwise direct-search methods
	Experiments
	Conclusions and future work
	Appendix

