Blockwise Direct-Search Methods

Haitian Li
The Hong Kong Polytechnic University

Joint work with Zaikun Zhang

ISMP 2024, Montreal, Canada

Blockwise Direct-Search Methods

Zaikun Zhang (replacing Haitian Li)

The Hong Kong Polytechnic University
Joint work with Haitian Li

ISMP 2024, Montreal, Canada

Derivative-free optimization (DFO): what and when?

What is DFO?

Solve an optimization problem

min f(z)

using function values but not derivatives (classical or generalized).

When do we use DFO?
@ Derivatives are not available even though f may be smooth.

@ “not available”: the evaluation is impossible or too expensive.

2/ 29

Applications of DFO

Ship Design Machine Learning Geosciences

@ Campana, Diez, lemma, Liuzzi, Lucidi, Rinaldi, and Serani, Derivative-free
global ship design optimization using global/local hybridization of the
DIRECT algorithm. Optim. Eng., 2016.

@ Ghanbari and Scheinberg, Black-box optimization in machine learning with
trust region based derivative free algorithm. arXiv:1703.06925, 2017.

@ Oliver, Cartis, Kriest, Tett, and Khatiwala, A derivative-free optimisation
method for global ocean biogeochemical models. Geosci. Model Dev., 2022.

3/ 29

Two classes of DFO methods

@ Model-based methods based on
» trust region
» line search

@ Direct-search methods based on
> simplex

» directions

4/ 29

Model-based methods v.s. Direct-search methods

Model-based Direct-search
Performance good less satisfactory
Implementation | complicated | relatively simple

© Model-based methods:
» The optimization process is guided by models.
» The coupling between modeling and optimization makes the
implementation complicated.
@ Direct-search methods:
» lterates are decided by comparing the function values of samples.
» No need to construct models.

5/ 29

An example of model-based methods: NEWUOA

@ A model-based DFO solver for unconstrained problems

Developed by M.J.D. Powell

Widely used by engineers and scientists
A popular benchmark in the DFO community *
The modernized version: PRIMA (https://github.com/libprima)

!Benchmarking derivative-free optimization algorithms, Moré, J. J. and Wild, S. M.,

SIAM Journal on Optimization, 2009.
6/ 29

NEWUOA: implementation

The il THierpolation o, TEHing 2y, b0
an initial point where £ is leas

Construct the first
pros and &

quadratic model Q= F. Set and

P
Subroutine TRSAPP caleulates

WHTH i sel. (o Lhe least
curvature of Q that is found.

TTROVE > 0, then & mod
ified by subroutine UPDATE,

Calewlate Flzop +d), and set

RaTzo= 2o P9y
so that Q interpolates F at A i revisod, Subjot 16 A 2.
d nstead of Bt Zygy ¥ i

{Hamerd < Flz
i Overwitien by z

then || the index of the interpolatior
Ty point that will be dropped next,

a5 20002 10 D 16placed bY 2 1,
s [vhere d i chosen bere by subrontine

Soty) | MG o e, it b
\ The condenin o the Tcar
«T that defines Q. Set RATIO=1
S 1 Zos e the curtent
|/ nm‘(H({\ A<, ﬂ Saa7__ | terpolition point that
ARATI00? S W27 iz the distance
T DIST=lzre oy |
ey by st & s Termination, after cal-
it o 10 sblck 0|12, 713 elting) i |
> e, e rechice [~ 0P P this has ot lvm-u done
A due to Jd] <

Figure 1: Au outline of the method, where Y—Yes and §—No

Framework of NEWUOA

and understanding are HARD

7/ 29

NEWUOA: implementation and understanding are HARD

Powell (2006)

The development of NEWUOA has taken nearly
three years. The work was very frustrating ..

Framework of NEWUOA

7/ 29

A much simpler algorithm: Direct Search (DS)

Algorithm 1: DS based on sufficient decrease

Input: 20 € R", 0 <6 <1<+, ag > 0, a forcing function p,
and a search direction set D C R".
for k=0,1,... do
if f(zr + ardr) < f(zr) — p(ag) for some dj, € D then
| Set xpy1 = xf + agdy and agy1 = yag
else
| Set zp11 =z and apq = Ooy,

N.B.: The MADS family is another important class of direct-search
methods based on integer lattices without imposing sufficient decrease.

8/ 29

Unsatisfactory performance of DS

-

008[Y
2 5
Q0.6 506
3 [0}
5 g
3 ©
g4 o4
8 5 el
5 0.2 —ps €02 s
& ----NEWUOA o . —-NEWUOA

0 0

0 2 4 6 8 0 2 4
logy(a), o= NF/NFu, logy (), « = NF/NF,
(a) r=10"3 (b) 7 = 1077

Unconstrained CUTEst problems, 6 < n < 200

9/ 29

Performance of the new method we will introduce

-

© 0.8 © 0.8
5)
Q0.6 Q0.6
g 0.4 8 0.4 '
E £
L £

5 0.2 5 0.2
o o

——our method
---NEWUOA

——our method
---NEWUOA

0 1 2 3 0 1 2 3 4
logy(@), = NF/NFy, logy(a), a=NF/NFyy,
(a) =103 (b) 7=10"°

o
o

Unconstrained CUTEst problems, 6 < n < 200

10/ 29

Flaws of DS?

Algorithm 1: DS based on sufficient decrease (recapped)

Input: g e R*, 0 <0 <1<+, ap > 0, a forcing function p,
and a search direction set D C R".
for k=0,1,... do
if f(zx + ardr) < f(zr) — p(ag) for some di, € D then
| Set zpy1 = xp + agdy and ag1 = Yo
else

| Set zp11 =z and apq = Ooy,

11/ 29

12/ 29

12/ 29

An illustration of DS

D= {617 —€1,€2, _62}

12/ 29

12/ 29

An illustration of DS

12/ 29

An illustration of DS

C

12/ 29

An illustration of DS

12/ 29

An illustration of DS

12/ 29

An illustration of DS

It is not reasonable to have one single stepsize for all directions!

12/ 29

An improved direct-search method?

13/ 29

An improved direct-search method?

13/ 29

An improved direct-search method?

Dl = {61, —61} and DQ = {62, —62}

13/ 29

An improved direct-search method?

13/ 29

An improved direct-search method?

13/ 29

An improved direct-search method?

C

13/ 29

An improved direct-search method?

C

13/ 29

An improved direct-search method?

13/ 29

An improved direct-search method?

13/ 29

An improved direct-search method?

/

=

13/ 29

An improved direct-search method?

13/ 29

Blockwise direct-search method

Algorithm 2: Blockwise Direct Search (BDS)

Input: 20 € R*, 0< <1<, a},...,a8" € (0,00), a forcing

function p, and a search direction set D = U™ D' C R™.

for k=0,1,... do
Set y; = xy,
fori=1,...,m do
if f(y). +apd) < f(yp) — plaj) for some dj € D' then
| Sety "' =yl +aldi and of | = yo
else '
| Sety,"' =y and af; = fa,

1

Set w1 =y "

14/ 29

Blockwise direct-search method

Algorithm 2: Blockwise Direct Search (BDS)

Input: 20 € R*, 0< <1<, a},...,a8" € (0,00), a forcing

function p, and a search direction set D = U™ D' C R™.

for k=0,1,... do
Set y; = xy,
fori=1,...,m do
if f(y, + agdy) < f(yp,) — plag) for some dj € D' then
| Setyi™ =yl +ald; and o}, = yal
else
| Sety; ' =y and af | = bo

1

Set w1 =y "

15/ 29

The difference from DS

@ The only difference between BDS and DS: blocks
e No backtracking/extrapolating line search like in

» Lucidi and Sciandrone, SIAM J. Optim., 2002
» Brilli, Kimiaei, Liuzzi, and Lucidi, arXiv:2302.05274, 2023

16/ 29

“Blocking”: A classic idea

It is obviously a classic idea to divide search directions into blocks and
treat them differently.

@ Blockwise Coordinate Descent

@ Audet, Le Digabel, and Tribes, Dynamic scaling in the mesh adaptive
direct search algorithm for blackbox optimization, Optim. Eng., 2015

17/ 29

Flexibility of the framework

@ The search direction set: a positive spanning set.
@ The division of blocks: any (“fits” the problem as much as possible).

@ The scheme of visiting blocks: cyclic (Gauss-Seidel), Jacobi, random.

18/ 29

Flexibility of the framework

@ The search direction set: a positive spanning set.
@ The division of blocks: any (“fits” the problem as much as possible).

@ The scheme of visiting blocks: cyclic (Gauss-Seidel), Jacobi, random.

Our implementation takes the following setting as the default:
e D={ej,—€1,...,n,—Cn}
(] DZ = {ei, —ei}

@ Gauss-Seidel scheme

18/ 29

Comparison between BDS and DS

-

o
®
o
®

o
e
o
e

Performance profile
o o
n S

i

i
i
5
:

i
1
i
lv
i I
i
ow|
®» 0
17
.
i
i

Performance profile
o o
n B

7

i

i

i

i

i

i

i

i

i,

i

i

i

i

N
o o
w O
w
i

o
o

0 2 4 6 8 0 2 4
logy(@), = NF/NFy, logy(a), a=NF/NFyy,
(a) =103 (b) 7=10"°

Unconstrained CUTEst problems, 6 < n < 200

19/ 29

Comparison betwen BDS and NEWUOA (recapped)

-

© 0.8 © 0.8

S 5

306 506

g 0.4 8 0.4 '

£ E

L L

802 —BDS 302 —BDS

---NEWUOA ---NEWUOA

0 0

0 1 2 3 0 1 2 3 4
logy(@), = NF/NFy, logy(a), a=NF/NFyy,
(a) =103 (b) 7=10"°

Unconstrained CUTEst problems, 6 < n < 200

20/ 29

Comparison between BDS and FD-BFGS

-

0.8 © 0.8

5 K

306 S06

3 8 L

8 0.4 S04

E €

g g

802 —BDS 302 —BDS
---FD-BFGS ---FD-BFGS

o
o

0 1 2 3 4 0 1 2 3 4
log(a), & = NF/NFy, logy(a), o = NF/NFy,
(@ 7=10"" (b) T=10""

Unconstrained CUTEst problems, 6 < n < 200

e FD-BFGS: Forward-finite-difference BFGS (fminunc in MATLAB).

21/ 29

Performance of BDS under noise

Observed function value:

f(x) = f(x)[L + or(z)],

where r(z) ~ N(0,1).
In our experiments:

@ problem set: unconstrained problems from CUTEst
@ dimensions: 6 < n < 200

e noise level: o = 1073

@ budget: 500n function evaluations

@ number of random experiments: 5

22/ 29

Comparison between BDS and DS

—_
g

©038 Yl 08—
IS ° 7
Q0.6 e Q0.6
® e ® R
8 = 8 e
« - © =
£ 0.4 . L £ 0.4 e ,
o2 A o2
o Ve | T —BDS [—BDS
& ---D$ 1 & ---DS
0 0
0 2 4 6 8 0 2 4 6
logy(a), = NF/NF, logy(a), @ = NF/NF;,
T=10""! =103

23/ 29

Comparison between BDS and NEWUOA

o
™ -

o
o

Performance profile
o o
N >

o

—BDS
---NEWUOA

o

1 2 3
logy(a), = NF/NF,

T=10""!

g

o ¢
o

o o
[e2) [e2)

Performance profile
o
~

—BDS
r ---NEWUOA
0
0 2 4
logy(a), @ = NF/NF;,

=103

23/ 29

Comparison between BDS and FD-BFGS (fminunc)

1 I 1
2038 208
% 5
30-6 —BDS 30.6 3 —__BDS
S ---FD-BFGS o | ---FD-BFGS
© © L
g 0.4 g 0.4
XS} e ..l
02 b 502+
o = o

0 ob

0 1 2 3 0 0.5 1
logy(a), = NF/NF, logy(a), @ = NF/NF;,

T=10" 7 =103

23/ 29

Comparison between BDS and adaptive FD-BFGS

1 o - 1 : ‘ ‘ ‘
008 @08 ﬁ
© e
206 ——BDS 06 —BDS
o ---FD-BFGS ot ---FD-BFGS
(] © L
£ 0.4 £ 0.4 I
g Y-S . T
02 h © 021
o - o L
0 0
0 1 2 3 0 1 2 3 4
10g2(a): a = NF/NFmiu IOgZ(a)7 o= NF/NFInin

=101 =103

Adaptive stepsize for FD-BFGS: h = \/(max |f|,1)o

23/ 29

BDS v.s. DS (under rotation)

Performance profile
o

o
®

o

o

6 -

4

2 —BDS

---DS
0
0 2 4 6

logy (), = NF/NFpy,
(a) r=10""

o
® -

o
e

Performance profile
o
n

o

o
N
i

—BDS
DS
0 5 : :
logy(a), o= NF/NFu
(b) T = 1073

f(z) = f(Uz)[1 + or(z)], where U is a random orthogonal matrix

24/ 29

BDS v.s. NEWUOA (under rotation)

-

© 08 © 0.8
5 S
306 506 |-
3 3
S04 S04
£ E
(=] (=}
8 0.2 ——BDS 3 0.2 —BDS
---NEWUOA -—-NEWUOA
0 0
0 2 4 0 2 4
logy(er), o« = NF/NFy, logy (), o = NF/NF,
(c)r=10"" (d) r=10"3

f(z) = f(Uz)[1 + or(z)], where U is a random orthogonal matrix

25/ 29

BDS v.s. adaptive FD-BFGS (under rotation)

-
-

]

Performance profile

<}
o

o o
o ®

o
o~

—BDS
---FD-BFGS

Performance profile
o o
() N

o
N

—BDS
---FD-BFGS

o
o

0 2 4 6 8 0 2 4 6
logy(c), « = NF/NF i, logy(cv), o« = NF/NF,
() T=10"" (f) 7=10"3

flz) = f(Uz)[1 + or(z)], where U is a random orthogonal matrix
Adaptive stepsize for FD-BFGS: h = \/(max |f|,1)o

26/ 29

Is BDS convergent?

@ The analysis of cyclic methods is challenging.

o Powell’s non-convergent example of cyclic coordinate descent method .

- A

g

limiting behavior of Powell's example

@ We do not know whether BDS is convergent yet.

@ Is it possible that the vanilla version of BDS is not convergent?

20n search directions for minimization algorithms, Mathematical programming, 1973,

Powell, M. J. D.
27/ 29

Conclusions

@ Blockwise Direct Search (BDS) is a substantial improvement over the
classical direct search method based on sufficient decrease

@ BDS is robust under noise without any noise-handling techniques

28/ 29

Future work

e Convergence and worst-case complexity (an adapted framework?)
e Make use of the existing iterates (finite difference or interpolation)

e Extend our implementation to other languages (Python, Julia, etc.)

|j 101 S open-source and easy to use
1
I.ﬁ E; @ tested continuously via GitHub Actions
[; 1; @ tested under different platforms
im

BDS on GitHub

Merci Beaucoup !

29/ 29

https://github.com/blockwise-direct-search

References |

» C. Audet and J. E. Dennis Jr.
Analysis of generalized pattern searches.
SIAM J. Optim., 13:889-903, 2002.

» C. Audet and J. E. Dennis Jr.
Mesh adaptive direct search algorithms for constrained optimization.
SIAM J. Optim., 17:188-217, 2006.

» C. Audet and D. Orban.
Finding optimal algorithmic parameters using derivative-free
optimization.
SIAM J. Optim., 17:642-664, 2006.

» A. S. Bandeira, K. Scheinberg, and L. N. Vicente.
Convergence of trust-region methods based on probabilistic models.
SIAM J. Optim., 24:1238-1264, 2014.

References |l

» E. F. Campana, M. Diez, U. lemma, G. Liuzzi, S. Lucidi, F. Rinaldi, and
A. Serani.
Derivative-free global ship design optimization using global/local
hybridization of the direct algorithm.
Optim. Eng., 17:127-156, 2016.

» N. I. M. Gould, D. Orban, and Ph. L. Toint.
CUTEst: a constrained and unconstrained testing environment with safe
threads for mathematical optimization.
Comput. Optim. Appl., 60:545-557, 2015.

» S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang.
Direct search based on probabilistic descent.
SIAM J. Optim., 25:1515-1541, 2015.

References llI

» T. Gu, W. Li, A. Zhao, Z. Bi, X. Li, F. Yang, C. Yan, W. Hu, D. Zhou,
T. Cui, X. Liu, Z. Zhang, and X. Zeng.
BBGP-sDFO: Batch Bayesian and Gaussian process enhanced subspace
derivative free optimization for high-dimensional analog circuit
synthesis.
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 43:417-430,
2023.

» T. G. Kolda, R. M. Lewis, and V. Torczon.
Optimization by direct search: New perspectives on some classical and
modern methods.
SIAM Rev., 45:385-482, 2003.

» S. Oliver, C. Cartis, |. Kriest, S. F. B. Tett, and S. Khatiwala.
A derivative-free optimisation method for global ocean biogeochemical
models.
Geosci. Model Dev., 15:3537-3554, 2022.

References IV

» M. Porcelli and Ph. L. Toint.
BFO, a trainable derivative-free brute force optimizer for nonlinear
bound-constrained optimization and equilibrium computations with
continuous and discrete variables.
ACM Trans. Math. Software, 44:6:1-6:25, 2017.

» M. J. D. Powell.
On search directions for minimization algorithms.
Math. Program., 4:193-201, 1973.

» M. J. D. Powell.
The NEWUOA software for unconstrained optimization without
derivatives.
In G. Di Pillo and M. Roma, editors, Large-scale Nonlinear
Optimization, pages 255-297. Springer, Boston, 2006.

	Classical direct-search methods
	Blockwise direct-search methods
	Experiments
	Conclusions and future work
	Appendix

