
Blockwise Direct-Search Methods

Haitian Li

The Hong Kong Polytechnic University

Joint work with Zaikun Zhang

ISMP 2024, Montreal, Canada



Blockwise Direct-Search Methods

Zaikun Zhang (replacing Haitian Li)

The Hong Kong Polytechnic University

Joint work with Haitian Li

ISMP 2024, Montreal, Canada



Derivative-free optimization (DFO): what and when?

What is DFO?
Solve an optimization problem

min
x∈Rn

f(x)

using function values but not derivatives (classical or generalized).

When do we use DFO?
Derivatives are not available even though f may be smooth.
“not available”: the evaluation is impossible or too expensive.
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Applications of DFO

Ship Design Machine Learning Geosciences

1 Campana, Diez, Iemma, Liuzzi, Lucidi, Rinaldi, and Serani, Derivative-free
global ship design optimization using global/local hybridization of the
DIRECT algorithm. Optim. Eng., 2016.

2 Ghanbari and Scheinberg, Black-box optimization in machine learning with
trust region based derivative free algorithm. arXiv:1703.06925, 2017.

3 Oliver, Cartis, Kriest, Tett, and Khatiwala, A derivative-free optimisation
method for global ocean biogeochemical models. Geosci. Model Dev., 2022.
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Two classes of DFO methods

1 Model-based methods based on
▶ trust region
▶ line search

2 Direct-search methods based on
▶ simplex
▶ directions
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Model-based methods v.s. Direct-search methods

Model-based Direct-search
Performance good less satisfactory
Implementation complicated relatively simple

1 Model-based methods:
▶ The optimization process is guided by models.
▶ The coupling between modeling and optimization makes the

implementation complicated.
2 Direct-search methods:

▶ Iterates are decided by comparing the function values of samples.
▶ No need to construct models.
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An example of model-based methods: NEWUOA

A model-based DFO solver for unconstrained problems
Developed by M.J.D. Powell
Widely used by engineers and scientists
A popular benchmark in the DFO community 1

The modernized version: PRIMA (https://github.com/libprima)

1Benchmarking derivative-free optimization algorithms, Moré, J. J. and Wild, S. M.,
SIAM Journal on Optimization, 2009.
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NEWUOA: implementation and understanding are HARD

Framework of NEWUOA

Powell (2006)
The development of NEWUOA has taken nearly
three years. The work was very frustrating …
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A much simpler algorithm: Direct Search (DS)

Algorithm 1: DS based on sufficient decrease

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α0 > 0, a forcing function ρ,
and a search direction set D ⊂ Rn.

for k = 0, 1, . . . do
if f(xk + αkdk) < f(xk)− ρ(αk) for some dk ∈ D then

Set xk+1 = xk + αkdk and αk+1 = γαk

else
Set xk+1 = xk and αk+1 = θαk

N.B.: The MADS family is another important class of direct-search
methods based on integer lattices without imposing sufficient decrease.
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Unsatisfactory performance of DS

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

DS

NEWUOA

(a) τ = 10−3

0 2 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

DS

NEWUOA

(b) τ = 10−5

Unconstrained CUTEst problems, 6 ≤ n ≤ 200

9 / 29



Performance of the new method we will introduce
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Flaws of DS?

Algorithm 1: DS based on sufficient decrease (recapped)

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α0 > 0, a forcing function ρ,
and a search direction set D ⊂ Rn.

for k = 0, 1, . . . do
if f(xk + αkdk) < f(xk)− ρ(αk) for some dk ∈ D then

Set xk+1 = xk + αkdk and αk+1 = γαk

else
Set xk+1 = xk and αk+1 = θαk
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An illustration of DS

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!
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An improved direct-search method?
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Blockwise direct-search method

Algorithm 2: Blockwise Direct Search (BDS)
Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α1

0, . . . , α
m
0 ∈ (0,∞), a forcing

function ρ, and a search direction set D = ∪m
i=1Di ⊂ Rn.

for k = 0, 1, . . . do
Set y1k = xk
for i = 1, . . . ,m do

if f(yik + αi
kd

i
k) < f(yik)− ρ(αi

k) for some dik ∈ Di then
Set yi+1

k = yik + αi
kd

i
k and αi

k+1 = γαi
k

else
Set yi+1

k = yik and αi
k+1 = θαi

k

Set xk+1 = ym+1
k
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Blockwise direct-search method

Algorithm 2: Blockwise Direct Search (BDS)
Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α1

0, . . . , α
m
0 ∈ (0,∞), a forcing

function ρ, and a search direction set D = ∪m
i=1Di ⊂ Rn.

for k = 0, 1, . . . do
Set y1k = xk
for i = 1, . . . ,m do

if f(yik + αi
kd

i
k) < f(yik)− ρ(αi

k) for some dik ∈ Di then
Set yi+1

k = yik + αi
kd

i
k and αi

k+1 = γαi
k

else
Set yi+1

k = yik and αi
k+1 = θαi

k

Set xk+1 = ym+1
k
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The difference from DS

The only difference between BDS and DS: blocks
No backtracking/extrapolating line search like in
▶ Lucidi and Sciandrone, SIAM J. Optim., 2002
▶ Brilli, Kimiaei, Liuzzi, and Lucidi, arXiv:2302.05274, 2023

16 / 29



“Blocking”: A classic idea

It is obviously a classic idea to divide search directions into blocks and
treat them differently.

Blockwise Coordinate Descent
Audet, Le Digabel, and Tribes, Dynamic scaling in the mesh adaptive
direct search algorithm for blackbox optimization, Optim. Eng., 2015
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Flexibility of the framework

The search direction set: a positive spanning set.
The division of blocks: any (“fits” the problem as much as possible).
The scheme of visiting blocks: cyclic (Gauss-Seidel), Jacobi, random.

Our implementation takes the following setting as the default:
D = {e1,−e1, . . . , en,−en}
Di = {ei,−ei}
Gauss-Seidel scheme
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Comparison between BDS and DS
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Comparison betwen BDS and NEWUOA (recapped)
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Comparison between BDS and FD-BFGS
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FD-BFGS: Forward-finite-difference BFGS (fminunc in MATLAB).
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Performance of BDS under noise

Observed function value:

f̃(x) = f(x)[1 + σr(x)],

where r(x) ∼ N (0, 1).
In our experiments:

problem set: unconstrained problems from CUTEst
dimensions: 6 ≤ n ≤ 200

noise level: σ = 10−3

budget: 500n function evaluations
number of random experiments: 5
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Comparison between BDS and DS

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

DS

τ = 10−1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

DS

τ = 10−3

23 / 29



Comparison between BDS and NEWUOA
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Comparison between BDS and FD-BFGS (fminunc)
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Comparison between BDS and adaptive FD-BFGS
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BDS v.s. DS (under rotation)
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f̃(x) = f(Ux)[1 + σr(x)], where U is a random orthogonal matrix
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BDS v.s. NEWUOA (under rotation)
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BDS v.s. adaptive FD-BFGS (under rotation)
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Is BDS convergent?

The analysis of cyclic methods is challenging.
Powell’s non-convergent example of cyclic coordinate descent method 2.

limiting behavior of Powell’s example

We do not know whether BDS is convergent yet.
Is it possible that the vanilla version of BDS is not convergent?

2On search directions for minimization algorithms, Mathematical programming, 1973,
Powell, M. J. D.
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Conclusions

1 Blockwise Direct Search (BDS) is a substantial improvement over the
classical direct search method based on sufficient decrease

2 BDS is robust under noise without any noise-handling techniques
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Future work

Convergence and worst-case complexity (an adapted framework?)
Make use of the existing iterates (finite difference or interpolation)
Extend our implementation to other languages (Python, Julia, etc.)

 

 

BDS on GitHub

open-source and easy to use
tested continuously via GitHub Actions
tested under different platforms

Merci Beaucoup !
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https://github.com/blockwise-direct-search
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