
Blockwise Direct-Search Methods

Haitian Li

The Hong Kong Polytechnic University

Joint work with Zaikun Zhang

The 2nd Derivative-free Optimization Symposium, Padova, Italy

Derivative-free optimization (DFO): what and when?

What is DFO?

Solve an optimization problem

min
x∈Rn

f(x)

using function values but not derivatives (classical or generalized).

When do we use DFO?

Derivatives are not available even though f may be smooth.

“not available”: the evaluation is impossible or too expensive.

1 / 26

The applications of DFO

Ship Design Machine Learning Ocean Biogeochemical

1 G. Liuzzi, S. Lucidi, F. Rinaldi et al., Derivative-free global ship design
optimization using global/local hybridization of the DIRECT algorithm.
OPTIM ENG, 2016.

2 Ghanbari and Scheinberg, Black-box optimization in machine learning
with trust region based derivative free algorithm, arXiv:1703.06925,
2017.

3 C. Cartis et al., A derivative-free optimisation method for global ocean
biogeochemical models. Geosci. Model Dev, 2022.

2 / 26

Two main classes of DFO methods

1 Direct-search methods based on

▶ simplex (Nelder-Mead method)

▶ directions (NOMAD, BFO, PDS,...)

2 Model-based methods based on

▶ trust region (Powell’s methods, ...)

▶ line search

Methods not covered by these two classes:

Bayesian optimization, genetic algorithms, etc.

3 / 26

Model-based methods v.s. Direct-search methods

Model-based Direct-search

Performance good less satisfactory

Implementation complicated relatively simple

1 Model-based methods:

▶ The optimization process is guided by models.
▶ The coupling between modeling and optimization makes the
implementation complicated.

2 Direct-search methods:

▶ Iterate is decided by comparing the function values of samples.
▶ No need to construct models.

4 / 26

An example of model-based methods: NEWUOA

A model-based DFO solver for unconstrained problems

Developed by M.J.D. Powell

Widely used by engineers and scientists

A popular benchmark in the DFO community1

The modernized version: PRIMA (https://github.com/libprima)

1Benchmarking derivative-free optimization algorithms, Moré, J. J. and Wild, S. M.,
SIAM Journal on Optimization, 2009.

5 / 26

NEWUOA: implementation and understanding is HARD

Framework of NEWUOA

From Powell (2006)

The development of NEWUOA has
taken nearly three years. The work
was very frustrating . . .

6 / 26

NEWUOA: implementation and understanding is HARD

Framework of NEWUOA

From Powell (2006)

The development of NEWUOA has
taken nearly three years. The work
was very frustrating . . .

6 / 26

Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Experiments

4. Conclusions and future work

Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Experiments

4. Conclusions and future work

A classical direct-search framework

What is direct search?

No explicit models are constructed based on function values.

Iterations are only decided according to function values.

Algorithm 1: Direct Search (DS) based on sufficient decrease

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α0 > 0, c > 0,
a searching direction set D ⊂ Rn.

for k = 0, 1, . . . do
if f(xk + αkdk) < f(xk)− ρ(αk) for some dk ∈ D then

Set xk+1 = xk + αkdk and αk+1 = γαk.
else

Set xk+1 = xk and αk+1 = θαk.

7 / 26

Unsatisfactory performance of direct-search methods

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

DS

NEWUOA

(a) τ = 10−3

0 2 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

DS

NEWUOA

(b) τ = 10−5

Unconstrained CUTEst problems, 6 ≤ n ≤ 200

8 / 26

Performance of the new method we will introduce

0 1 2 3
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

our method

NEWUOA

(a) τ = 10−3

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

our method

NEWUOA

(b) τ = 10−5

Unconstrained CUTEst problems, 6 ≤ n ≤ 200

9 / 26

Flaws of the classical direct-search method?

Algorithm 1: Direct Search (DS) based on sufficient decrease

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α0 > 0, c > 0, searching direction
set D ⊂ Rn.

for k = 0, 1, . . . do
if f(xk + αkdk) < f(xk)− ρ(αk) for some dk ∈ D then

Set xk+1 = xk + αkdk and αk+1 = γαk.
else

Set xk+1 = xk and αk+1 = θαk.

10 / 26

An illustration of the classical direct-search method

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

11 / 26

An illustration of the classical direct-search method

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

11 / 26

An illustration of the classical direct-search method

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

11 / 26

An illustration of the classical direct-search method

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

11 / 26

An illustration of the classical direct-search method

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

11 / 26

An illustration of the classical direct-search method

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

11 / 26

An illustration of the classical direct-search method

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

11 / 26

An illustration of the classical direct-search method

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

11 / 26

An illustration of the classical direct-search method

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

11 / 26

An illustration of the classical direct-search method

e1α
−e1

e2

−e2

D = {e1,−e1, e2,−e2}

x

It is not reasonable to have one single stepsize for all directions!

11 / 26

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 26

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 26

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 26

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 26

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 26

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 26

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 26

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 26

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 26

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 26

An improved direct-search method?

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 26

Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Experiments

4. Conclusions and future work

Blockwise direct-search method

Algorithm 2: Blockwise Direct Search (BDS)

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α1
0, . . . , α

m
0 ∈ (0,∞), c > 0, a

searching direction set D = ∪m
i=1Di ⊂ Rn.

for k = 0, 1, . . . do
Set y1k = xk.
for i = 1, . . . ,m do

if f(yik + αi
kd

i
k) < f(yik)− ρ(αi

k) for some dik ∈ Di then
Set yi+1

k = yik + αi
kd

i
k and αi

k+1 = γαi
k.

else
Set yi+1

k = yik and αi
k+1 = θαi

k.

Set xk+1 = ym+1
k .

13 / 26

The difference from the classical direct search

The only difference from the classical direct search: blocks

No backtracking/extrapolating line search like in

▶ S. Lucidi and M. Sciandrone, SIAM Journal on Optimization, 2002

▶ A. Brilli, M. Kimiaei, G. Liuzzi, and S. Lucidi, arXiv:2302.05274

▶ Talk of A. Cristofari, DFOS 2024

14 / 26

Flexibility of the framework

The searching direction set: A positive spanning set.

The division of blocks: any (“fits” the problem as much as possible).

The scheme of visiting blocks: Cyclic (Gauss-Seidel), Jacobi, random.

Our implementation takes the following setting as the default:

D = {e1,−e1, . . . , en,−en}
Di = {ei,−ei}
Gauss-Seidel scheme

15 / 26

Flexibility of the framework

The searching direction set: A positive spanning set.

The division of blocks: any (“fits” the problem as much as possible).

The scheme of visiting blocks: Cyclic (Gauss-Seidel), Jacobi, random.

Our implementation takes the following setting as the default:

D = {e1,−e1, . . . , en,−en}
Di = {ei,−ei}
Gauss-Seidel scheme

15 / 26

Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Experiments

4. Conclusions and future work

Comparison between BDS and DS

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

DS

(a) τ = 10−3

0 2 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

DS

(b) τ = 10−5

Unconstrained CUTEst problems, 6 ≤ n ≤ 200

16 / 26

Comparison betwen BDS and NEWUOA (recapped)

0 1 2 3
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

NEWUOA

(a) τ = 10−3

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

NEWUOA

(b) τ = 10−5

Unconstrained CUTEst problems, 6 ≤ n ≤ 200

17 / 26

Comparison between BDS and FD-BFGS

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

FD-BFGS

(a) τ = 10−3

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

FD-BFGS

(b) τ = 10−5

Unconstrained CUTEst problems, 6 ≤ n ≤ 200

FD-BFGS: Forward-finite-difference BFGS (fminunc in MATLAB).

18 / 26

Performance of BDS under noise

Observed function value:

f̃(x) = f(x)[1 + σr(x)],

where r(x) ∼ N (0, 1).
In our experiments:

problem set: unconstrained problems from CUTEst

dimensions: 6 ≤ n ≤ 200

noise level: σ = 10−3

budget: 500n function evaluations

number of random experiments: 5

19 / 26

BDS v.s. NEWUOA

0 2 4
0

0.2

0.4

0.6

0.8

1

P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

BDS

NEWUOA

τ = 10−3

0 2 4
0

0.2

0.4

0.6

0.8

1

P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

BDS

NEWUOA

τ = 10−5

20 / 26

BDS v.s. FD-BFGS (fminunc)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

BDS

FD-BFGS

τ = 10−3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

BDS

FD-BFGS

τ = 10−5

20 / 26

BDS v.s. adaptive FD-BFGS

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

BDS

FD-BFGS

τ = 10−3

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

BDS

FD-BFGS

τ = 10−5

Adaptive stepsize for FD-BFGS: h =
√

(max |f |, 1)σ

20 / 26

Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Experiments

4. Conclusions and future work

Structured nonsmooth problems

min
x∈Rn

f(x) + Φ(x)

f is smooth

Φ is nonsmooth but separable with respect to the blocks

Examples:

lp-regularized problems

bound-constrained problems

21 / 26

Is BDS convergent?

The analysis of cyclic methods is challenging.

Powell’s non-convergent example of cyclic coordinate descent method2.

limiting behavior of Powell’s example

We do not know whether BDS is convergent yet.

Is it possible that the vanilla version of BDS is not convergent?

2On search directions for minimization algorithms, Mathematical programming, 1973,
Powell, M. J. D.

22 / 26

Conclusions

1 Blockwise Direct Search (BDS) is a substantial improvement over the
classical direct search method (based on sufficient decrease)

2 BDS is robust under noise without any noise-handling techniques

23 / 26

Future work

Convergence and worst-case complexity (an adapted framework?)

Make use of the existing iterates (finite difference or interpolation)

Extend our implementation to other languages (Python, Julia, etc.)

BDS on GitHub

open-source and easy to use

tested continuously via GitHub Actions

tested under different platforms

Thank you!

24 / 26

https://github.com/blockwise-direct-search

References I

▶ C. Audet and J. E. Dennis Jr.
Analysis of generalized pattern searches.
SIAM J. Optim., 13:889–903, 2002.

▶ C. Audet and J. E. Dennis Jr.
Mesh adaptive direct search algorithms for constrained optimization.
SIAM J. Optim., 17:188–217, 2006.

▶ C. Audet and D. Orban.
Finding optimal algorithmic parameters using derivative-free
optimization.
SIAM Journal on Optimization, 17(3):642–664, 2006.

▶ A. S. Bandeira, K. Scheinberg, and L. N. Vicente.
Convergence of trust-region methods based on probabilistic models.
SIAM J. Optim., 24:1238–1264, 2014.

References II

▶ Emilio F Campana, Matteo Diez, Umberto Iemma, Giampaolo Liuzzi,
Stefano Lucidi, Francesco Rinaldi, and Andrea Serani.
Derivative-free global ship design optimization using global/local
hybridization of the direct algorithm.
Optimization and Engineering, 17:127–156, 2016.

▶ N. I. M. Gould, D. Orban, and Ph. L. Toint.
CUTEst: a constrained and unconstrained testing environment with safe
threads for mathematical optimization.
Comput. Optim. Appl., 60:545–557, 2015.

▶ S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang.
Direct search based on probabilistic descent.
SIAM J. Optim., 25:1515–1541, 2015.

References III

▶ Tianchen Gu, Wangzhen Li, Aidong Zhao, Zhaori Bi, Xudong Li, Fan
Yang, Changhao Yan, Wenchuang Hu, Dian Zhou, Tao Cui, et al.
Bbgp-sdfo: Batch bayesian and gaussian process enhanced subspace
derivative free optimization for high-dimensional analog circuit
synthesis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2023.

▶ T. G. Kolda, R. M. Lewis, and V. Torczon.
Optimization by direct search: New perspectives on some classical and
modern methods.
SIAM Rev., 45:385–482, 2003.

References IV

▶ S. Oliver, C. Cartis, I. Kriest, S. F. B. Tett, and S. Khatiwala.
A derivative-free optimisation method for global ocean biogeochemical
models.
Geoscientific Model Development, 15(9):3537–3554, 2022.

▶ M. Porcelli and Ph. L. Toint.
BFO, a trainable derivative-free brute force optimizer for nonlinear
bound-constrained optimization and equilibrium computations with
continuous and discrete variables.
ACM Trans. Math. Software, 44:6:1–6:25, 2017.

▶ M. J. D. Powell.
The NEWUOA software for unconstrained optimization without
derivatives.
In G. Di Pillo and M. Roma, editors, Large-scale Nonlinear
Optimization, pages 255–297. Springer, Boston, 2006.

References V

▶ Michael JD Powell.
On search directions for minimization algorithms.
Mathematical programming, 4:193–201, 1973.

	Classical direct-search methods
	Blockwise direct-search methods
	Experiments
	Conclusions and future work
	Appendix

