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Derivative-free optimization (DFO): what and when?

What is DFO?

Solve an optimization problem

min f(z)

using function values but not derivatives (classical or generalized).

When do we use DFO?
@ Derivatives are not available even though f may be smooth.

@ “not available”: the evaluation is impossible or too expensive.
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The applications of DFO

Ship Design Machine Learning Ocean Biogeochemical

@ G. Liuzzi, S. Lucidi, F. Rinaldi et al., Derivative-free global ship design
optimization using global/local hybridization of the DIRECT algorithm.
OPTIM ENG, 2016.

@ Ghanbari and Scheinberg, Black-box optimization in machine learning
with trust region based derivative free algorithm, arXiv:1703.06925,
2017.

© C. Cartis et al., A derivative-free optimisation method for global ocean
biogeochemical models. Geosci. Model Dev, 2022.
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Two main classes of DFO methods

@ Direct-search methods based on

» simplex (Nelder-Mead method)
» directions (NOMAD, BFO, PDS,...)

@ Model-based methods based on
» trust region (Powell’'s methods, ...)
» line search

Methods not covered by these two classes:

Bayesian optimization, genetic algorithms, etc.
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Model-based methods v.s. Direct-search methods

Model-based Direct-search
Performance good less satisfactory
Implementation | complicated | relatively simple

@ Model-based methods:
» The optimization process is guided by models.
» The coupling between modeling and optimization makes the
implementation complicated.
@ Direct-search methods:
» lterate is decided by comparing the function values of samples.
» No need to construct models.
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An example of model-based methods: NEWUOA

A model-based DFO solver for unconstrained problems

Developed by M.J.D. Powell

Widely used by engineers and scientists
A popular benchmark in the DFO community!
The modernized version: PRIMA (https://github.com/libprima)

!Benchmarking derivative-free optimization algorithms, Moré, J. J. and Wild, S. M.,

SIAM Journal on Optimization, 2009.
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NEWUOA: implementation and understanding is HARD
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From Powell (2006)

The development of NEWUOA has
taken nearly three years. The work
was very frustrating
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A classical direct-search framework

What is direct search?
@ No explicit models are constructed based on function values.

@ lterations are only decided according to function values.

Algorithm 1: Direct Search (DS) based on sufficient decrease

Input: zg e R*, 0<0<1<~v,a9p>0, ¢>0,
a searching direction set D C R™.
for k=0,1,... do
if f(zr+ ardr) < f(xr) — p(ay) for some dj, € D then
‘ Set Tht1 = Tk + ady, and Qg1 = Y.
else

L Set Thy1 = T and g1 = O
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Unsatisfactory performance of direct-search methods
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Performance of the new method we will introduce
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Flaws of the classical direct-search method?

Algorithm 1: Direct Search (DS) based on sufficient decrease

Input: zg e R*, 0 <0 <1<, ag >0, ¢> 0, searching direction
set D C R™.

for k=0,1,... do

if f(zr+ ardy) < f(xr) — playg) for some dj, € D then
‘ Set xx11 = Tk + agdy, and agr1 = you.
else

L Set xx11 = xx and ag11 = Oay,.
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An illustration of the classical direct-search method
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An illustration of the classical direct-search method
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An illustration of the classical direct-search method

D= {617 —€1, €2, _62}

11/ 26



An illustration of the classical direct-search method

11/ 26



An illustration of the classical direct-search method

11/ 26



An illustration of the classical direct-search method
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An illustration of the classical direct-search method
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An illustration of the classical direct-search method
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An illustration of the classical direct-search method
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An illustration of the classical direct-search method

It is not reasonable to have one single stepsize for all directions!
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An improved direct-search method?
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An improved direct-search method?

Dl = {61, —61} and DQ = {62, —62}
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An improved direct-search method?
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An improved direct-search method?
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Blockwise direct-search method

Algorithm 2: Blockwise Direct Search (BDS)

Input: 70 € R", 0< 0 <1<+, 0a,...,af € (0,00), ¢ >0, a
searching direction set D = U™ D C R™.

for k=0,1,... do

Set y} = .

fori=1,...,mdo
if f(y;, + opdy) < f(y;) — p(aj,) for some dj € D' then
| Sety; ™ =yl +aldi and of | = yai.

else

| Sety; ' =y and af | = faj.

| Set w1 = y,@”“.
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The difference from the classical direct search

@ The only difference from the classical direct search: blocks

@ No backtracking/extrapolating line search like in
» S. Lucidi and M. Sciandrone, SIAM Journal on Optimization, 2002
» A. Brilli, M. Kimiaei, G. Liuzzi, and S. Lucidi, arXiv:2302.05274
» Talk of A. Cristofari, DFOS 2024
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Flexibility of the framework

@ The searching direction set: A positive spanning set.
@ The division of blocks: any ( “fits” the problem as much as possible).

@ The scheme of visiting blocks: Cyclic (Gauss-Seidel), Jacobi, random.
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Flexibility of the framework

@ The searching direction set: A positive spanning set.
@ The division of blocks: any ( “fits” the problem as much as possible).

@ The scheme of visiting blocks: Cyclic (Gauss-Seidel), Jacobi, random.

Our implementation takes the following setting as the default:
e D={ey,—e1,...,en,—Cpn}

o D! = {e;, —e;}

o Gauss-Seidel scheme
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Comparison between BDS and DS
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Comparison betwen BDS and NEWUOA (recapped)
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Comparison between BDS and FD-BFGS
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e FD-BFGS: Forward-finite-difference BFGS (fminunc in MATLAB).
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Performance of BDS under noise

Observed function value:

f(@) = f(2)[L + or(z)],

where r(z) ~ N(0,1).
In our experiments:

@ problem set: unconstrained problems from CUTEst
@ dimensions: 6 < n < 200

@ noise level: o = 1073

@ budget: 500n function evaluations

@ number of random experiments: 5
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BDS v.s. NEWUOA
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BDS v.s. FD-BFGS (fminunc)

1 — 1
© 0.8 008
° S 7
G506 S 06
[0} [0}
e e
(] © L
g 0.4 g 0.4 7
(] [e]
5 02 —BDS 502 —BDS
e ---FD-BFGS |1 o ---FD-BFGS
0 0
0 0.5 1 0 0.5 1
logy (@), « = NF/NFy logy(a), a = NF/NFpui,
=103 T=107°

20/ 26



BDS v.s. adaptive FD-BFGS
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Structured nonsmooth problems

min f(z) + &(z)

@ f is smooth
@ ® is nonsmooth but separable with respect to the blocks

Examples:
@ [,-regularized problems

@ bound-constrained problems
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Is BDS convergent?

@ The analysis of cyclic methods is challenging.

@ Powell’s non-convergent example of cyclic coordinate descent method?.

- A

>

limiting behavior of Powell's example

@ We do not know whether BDS is convergent yet.

@ Is it possible that the vanilla version of BDS is not convergent?

20n search directions for minimization algorithms, Mathematical programming, 1973,

Powell, M. J. D.
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Conclusions

@ Blockwise Direct Search (BDS) is a substantial improvement over the
classical direct search method (based on sufficient decrease)

@ BDS is robust under noise without any noise-handling techniques
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Future work

e Convergence and worst-case complexity (an adapted framework?)
@ Make use of the existing iterates (finite difference or interpolation)

e Extend our implementation to other languages (Python, Julia, etc.)

@ open-source and easy to use

@ tested continuously via GitHub Actions

o tested under different platforms

BDS on GitHub

Thank you!
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https://github.com/blockwise-direct-search
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