Blockwise Direct-Search Methods

Haitian Li
The Hong Kong Polytechnic University

Joint work with Zaikun Zhang

The 2nd Derivative-free Optimization Symposium, Padova, Italy

Derivative-free optimization (DFO): what and when?

What is DFO?

Solve an optimization problem

min f(z)

using function values but not derivatives (classical or generalized).

When do we use DFO?
@ Derivatives are not available even though f may be smooth.

@ “not available”: the evaluation is impossible or too expensive.

1/ 26

The applications of DFO

Ship Design Machine Learning Ocean Biogeochemical

@ G. Liuzzi, S. Lucidi, F. Rinaldi et al., Derivative-free global ship design
optimization using global/local hybridization of the DIRECT algorithm.
OPTIM ENG, 2016.

@ Ghanbari and Scheinberg, Black-box optimization in machine learning
with trust region based derivative free algorithm, arXiv:1703.06925,
2017.

© C. Cartis et al., A derivative-free optimisation method for global ocean
biogeochemical models. Geosci. Model Dev, 2022.

2/ 26

Two main classes of DFO methods

@ Direct-search methods based on

» simplex (Nelder-Mead method)
» directions (NOMAD, BFO, PDS,...)

@ Model-based methods based on
» trust region (Powell’'s methods, ...)
» line search

Methods not covered by these two classes:

Bayesian optimization, genetic algorithms, etc.

3/ 26

Model-based methods v.s. Direct-search methods

Model-based Direct-search
Performance good less satisfactory
Implementation | complicated | relatively simple

@ Model-based methods:
» The optimization process is guided by models.
» The coupling between modeling and optimization makes the
implementation complicated.
@ Direct-search methods:
» lterate is decided by comparing the function values of samples.
» No need to construct models.

4/ 26

An example of model-based methods: NEWUOA

A model-based DFO solver for unconstrained problems

Developed by M.J.D. Powell

Widely used by engineers and scientists
A popular benchmark in the DFO community!
The modernized version: PRIMA (https://github.com/libprima)

!Benchmarking derivative-free optimization algorithms, Moré, J. J. and Wild, S. M.,

SIAM Journal on Optimization, 2009.
5/ 26

NEWUOA: implementation and understanding is HARD

Pick the mitial interpolation points, IeLtng Zp, be

agr] 1 il point where F i est. Consruc the fst
quadratic model Q~F. Set

Subroutine TRSAPP calculates

(Using CRVHIN)

testif three - |
; _‘e| i
t lld]l and F-Q
\are “small”. "/

LS

curvature of Q that s found.

TTHOVE = 0, then Q Is mod-
ified by subroutine UPDATE,
5o that Q interpolates F at
£+ instead Of At Zygpy
1 F (o +) < (i), then
L I8 OVCrWTitten bY Zopetd.

the index of the interpolation
point that will be dropped next.

s v 15 ZOWE 10 Do roplaced by Zpitd,
/et | where d is chosen here by subroutine
Y(RTIO) BrcLac EN, in a way that helps

12" | the conditioning of the linear system
W that defines Q. Set RATIO= 1.

Let Zyo be the current
8 max|d]. A\w o 2A7\8__| interpolation point that
d 5 Polemsr2aan e dsanee

|Zuove — Zops |

Reduce p by about &
factor of 10 subject to |12 />
> peaa, and reduce [o070

" Termination,afler ol

13
(v
A t0 max(Epu, o). due to [d] <}

Figure 1: An outline of the method, where Y=Yes and N=No

Framework of NEWUOA

Y

6/ 26

NEWUOA: implementation and understanding is HARD

. Pmk um nitial interpolation points, 1ELNE Zope De
an initial point where F is least. Construct the firs
BEGIN

Quadratic model QP Set =g 30 Ao

Subroutine TRSAPP calculates
d

(Using CRYMIN)\
test if three ro-
cent values of %,
{ld] and F— q

\are “small"

curvature of Q that s found.

TTHOVE = 0, then Q Is mod- Caleulate F(zqy +d), and sot
ified by subroutine UPDATE,

0 that inarplaes F o |

00 2o

(). then

o 38 i e

Zygre 15 £0INE 10 b0 replaced by Zoptd,
y/faIo", | Where d is chosen here by subrou

Reduce A by
afactor of 10

Y BIGLAG or BIGDEN, in a way that helps
>0.17) y orto ts lower
N e conditoning of the ineas systm | | b p. St
that defines Q. Set RATIO= 1 RATIO 1

Let Zyo be the current
10 (orsrs aa7)8 | Merplation point hat

[
]
mas [d], A]

and RATIOS0?

Radice g b ot “Termination, after cal
et of 10 subjet 10 3] culating F(z,,,+d). if | Evp,

» = peaa, and reduce "' ”“”‘ this has not been done

A to max(pod; pues]. due to d]| < 3p.

Figure 1: An outline of the method, where Y=Yes and N=No

Framework of NEWUOA

From Powell (2006)

The development of NEWUOA has
taken nearly three years. The work
was very frustrating

6/ 26

Outline

1. Classical direct-search methods
2. Blockwise direct-search methods
3. Experiments

4. Conclusions and future work

1. Classical direct-search methods
2. Blockwise direct-search methods
3. Experiments

4. Conclusions and future work

A classical direct-search framework

What is direct search?
@ No explicit models are constructed based on function values.

@ lterations are only decided according to function values.

Algorithm 1: Direct Search (DS) based on sufficient decrease

Input: zg e R*, 0<0<1<~v,a9p>0, ¢>0,
a searching direction set D C R™.
for k=0,1,... do
if f(zr+ ardr) < f(xr) — p(ay) for some dj, € D then
‘ Set Tht1 = Tk + ady, and Qg1 = Y.
else

L Set Thy1 = T and g1 = O

7/ 26

Unsatisfactory performance of direct-search methods

o
® -

o
e

Performance profile
o o
o i

o

-

""" @08 [T
°
S0.6
[0}
[$)
S 0.4
go.
S
b ~—Ds 5 02 —DS
---NEWUOA o - --NEWUOA
0
0 2 4 6 8 0 2 4
logy(cr), o« = NF/NF,, logy(cv), o« = NF/NF,,
(@ r=10" (b) T=10""

Unconstrained CUTEst problems, 6 < n < 200

8/ 26

Performance of the new method we will introduce

-

0.8 © 0.8
5)
Q0.6 0.6
g 0.4 8 0.4 '
E £
L £

5 0.2 5 0.2
o o

—our method
---NEWUOA

——our method
---NEWUOA

0 1 2 3 0 1 2 3 4
logy(cr), o« = NF/NF,, logy(cv), o« = NF/NF,,
(@ r=10" (b) T=10""

o
o

Unconstrained CUTEst problems, 6 < n < 200

9/ 26

Flaws of the classical direct-search method?

Algorithm 1: Direct Search (DS) based on sufficient decrease

Input: zg e R*, 0 <0 <1<, ag >0, ¢> 0, searching direction
set D C R™.

for k=0,1,... do

if f(zr+ ardy) < f(xr) — playg) for some dj, € D then
‘ Set xx11 = Tk + agdy, and agr1 = you.
else

L Set xx11 = xx and ag11 = Oay,.

10/ 26

An illustration of the classical direct-search method

11/ 26

An illustration of the classical direct-search method

11/ 26

An illustration of the classical direct-search method

D= {617 —€1, €2, _62}

11/ 26

An illustration of the classical direct-search method

11/ 26

An illustration of the classical direct-search method

11/ 26

An illustration of the classical direct-search method

C

11/ 26

An illustration of the classical direct-search method

(

11/ 26

An illustration of the classical direct-search method

-

(=

11/ 26

An illustration of the classical direct-search method

11/ 26

An illustration of the classical direct-search method

It is not reasonable to have one single stepsize for all directions!

11/ 26

An improved direct-search method?

12/ 26

An improved direct-search method?

12/ 26

An improved direct-search method?

Dl = {61, —61} and DQ = {62, —62}

12/ 26

An improved direct-search method?

12/ 26

An improved direct-search method?

12/ 26

An improved direct-search method?

C

12/ 26

An improved direct-search method?

C

12/ 26

An improved direct-search method?

12/ 26

An improved direct-search method?

12/ 26

An improved direct-search method?

/

=

12/ 26

An improved direct-search method?

12/ 26

1. Classical direct-search methods
2. Blockwise direct-search methods
3. Experiments

4. Conclusions and future work

Blockwise direct-search method

Algorithm 2: Blockwise Direct Search (BDS)

Input: 70 € R", 0< 0 <1<+, 0a,...,af € (0,00), ¢ >0, a
searching direction set D = U™ D C R™.

for k=0,1,... do

Set y} = .

fori=1,...,mdo
if f(y;, + opdy) < f(y;) — p(aj,) for some dj € D' then
| Sety; ™ =yl +aldi and of | = yai.

else

| Sety; ' =y and af | = faj.

| Set w1 = y,@”“.

13/ 26

The difference from the classical direct search

@ The only difference from the classical direct search: blocks

@ No backtracking/extrapolating line search like in
» S. Lucidi and M. Sciandrone, SIAM Journal on Optimization, 2002
» A. Brilli, M. Kimiaei, G. Liuzzi, and S. Lucidi, arXiv:2302.05274
» Talk of A. Cristofari, DFOS 2024

14/ 26

Flexibility of the framework

@ The searching direction set: A positive spanning set.
@ The division of blocks: any (“fits” the problem as much as possible).

@ The scheme of visiting blocks: Cyclic (Gauss-Seidel), Jacobi, random.

15/ 26

Flexibility of the framework

@ The searching direction set: A positive spanning set.
@ The division of blocks: any (“fits” the problem as much as possible).

@ The scheme of visiting blocks: Cyclic (Gauss-Seidel), Jacobi, random.

Our implementation takes the following setting as the default:
e D={ey,—e1,...,en,—Cpn}

o D! = {e;, —e;}

o Gauss-Seidel scheme

15/ 26

1. Classical direct-search methods
2. Blockwise direct-search methods
3. Experiments

4. Conclusions and future work

Comparison between BDS and DS

-

.
0.8 © 0.8
S K
506 S0.6
3 3
804 S 0.4
g N B go
£ i S
8 0.2 =" |—BDS 3 o2 __|—8Ds
- ---DS ---Ds

o
o

0 2 4 6 8 0 2 4
logy(cr), o« = NF/NF,, logy(cv), o« = NF/NF,,
(a) T=1073 (b) 7 =10"°

Unconstrained CUTEst problems, 6 < n < 200

16/ 26

Comparison betwen BDS and NEWUOA (recapped)

-

0.8 © 0.8

S K]

20.6 0.6

g 0.4 8 0.4 '

E £

L L

802 —BDS 302 —BDS

---NEWUOA ---NEWUOA

0 0

0 1 2 3 0 1 2 3 4
logy(cr), o« = NF/NF,, logy(cv), o« = NF/NF,,
(@ r=10" (b) T=10""

Unconstrained CUTEst problems, 6 < n < 200

17/ 26

Comparison between BDS and FD-BFGS

-

© 0.8 © 0.8

5 K

306 S06

3 8 L

8 0.4 S 0.4

E €

g g

802 —BDS 302 —BDS
---FD-BFGS ---FD-BFGS

o
o

0 1 2 3 4 0 1 2 3 4
logy(a), o = NF/NFy, logy(a), o= NF/NFyu,
(ay r=10""° (b) T=10""

Unconstrained CUTEst problems, 6 < n < 200

e FD-BFGS: Forward-finite-difference BFGS (fminunc in MATLAB).

18/ 26

Performance of BDS under noise

Observed function value:

f(@) = f(2)[L + or(z)],

where r(z) ~ N(0,1).
In our experiments:

@ problem set: unconstrained problems from CUTEst
@ dimensions: 6 < n < 200

@ noise level: o = 1073

@ budget: 500n function evaluations

@ number of random experiments: 5

19/ 26

BDS v.s. NEWUOA

_
—_

o
®

5

o
o

[
o

o
~
3

1

i
i
e
~

o
[N}

Performance profile
I
I
Performance profile
o
N

—BDS —BDS
---NEWUOA -—-NEWUOA

0 2 4 0 2 4
logy (@), « = NF/NFy logy(a), a = NF/NFpui,

=103 T=107°

20/ 26

BDS v.s. FD-BFGS (fminunc)

1 — 1
© 0.8 008
° S 7
G506 S 06
[0} [0}
e e
(] © L
g 0.4 g 0.4 7
(] [e]
5 02 —BDS 502 —BDS
e ---FD-BFGS |1 o ---FD-BFGS
0 0
0 0.5 1 0 0.5 1
logy (@), « = NF/NFy logy(a), a = NF/NFpui,
=103 T=107°

20/ 26

BDS v.s. adaptive FD-BFGS

o
™ -

o
o

Performance profile
o o
V) EN

o

Adaptive stepsize for FD-BFGS: h =

[—BDS
---FD-BFGS
0 1 2 3
logy (@), « = NF/NFy,
T=10"3

Performance profile
o o o o
N £y [} oo —_

o

R S e
_|—BDS s

bmimimimimimmimzmeme=t FD-BFGS

0 05 1 1.5 2

10g2<0t), a = NF/NFmiu
7=10"°

(max|f],1)o

20/ 26

1. Classical direct-search methods
2. Blockwise direct-search methods
3. Experiments

4. Conclusions and future work

Structured nonsmooth problems

min f(z) + &(z)

@ f is smooth
@ ® is nonsmooth but separable with respect to the blocks

Examples:
@ [,-regularized problems

@ bound-constrained problems

21/ 26

Is BDS convergent?

@ The analysis of cyclic methods is challenging.

@ Powell’s non-convergent example of cyclic coordinate descent method?.

- A

>

limiting behavior of Powell's example

@ We do not know whether BDS is convergent yet.

@ Is it possible that the vanilla version of BDS is not convergent?

20n search directions for minimization algorithms, Mathematical programming, 1973,

Powell, M. J. D.
22/ 26

Conclusions

@ Blockwise Direct Search (BDS) is a substantial improvement over the
classical direct search method (based on sufficient decrease)

@ BDS is robust under noise without any noise-handling techniques

23/ 26

Future work

e Convergence and worst-case complexity (an adapted framework?)
@ Make use of the existing iterates (finite difference or interpolation)

e Extend our implementation to other languages (Python, Julia, etc.)

@ open-source and easy to use

@ tested continuously via GitHub Actions

o tested under different platforms

BDS on GitHub

Thank you!

24/ 26

https://github.com/blockwise-direct-search

References |

» C. Audet and J. E. Dennis Jr.
Analysis of generalized pattern searches.
SIAM J. Optim., 13:889-903, 2002.

» C. Audet and J. E. Dennis Jr.
Mesh adaptive direct search algorithms for constrained optimization.
SIAM J. Optim., 17:188-217, 2006.

» C. Audet and D. Orban.
Finding optimal algorithmic parameters using derivative-free
optimization.
SIAM Journal on Optimization, 17(3):642-664, 2006.

» A. S. Bandeira, K. Scheinberg, and L. N. Vicente.
Convergence of trust-region methods based on probabilistic models.
SIAM J. Optim., 24:1238-1264, 2014.

References Il

» Emilio F Campana, Matteo Diez, Umberto lemma, Giampaolo Liuzzi,
Stefano Lucidi, Francesco Rinaldi, and Andrea Serani.
Derivative-free global ship design optimization using global/local
hybridization of the direct algorithm.
Optimization and Engineering, 17:127-156, 2016.

» N. I. M. Gould, D. Orban, and Ph. L. Toint.
CUTEst: a constrained and unconstrained testing environment with safe
threads for mathematical optimization.
Comput. Optim. Appl., 60:545-557, 2015.

» S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang.
Direct search based on probabilistic descent.
SIAM J. Optim., 25:1515-1541, 2015.

References IlI

» Tianchen Gu, Wangzhen Li, Aidong Zhao, Zhaori Bi, Xudong Li, Fan
Yang, Changhao Yan, Wenchuang Hu, Dian Zhou, Tao Cui, et al.
Bbgp-sdfo: Batch bayesian and gaussian process enhanced subspace
derivative free optimization for high-dimensional analog circuit
synthesis.

IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2023.

» T. G. Kolda, R. M. Lewis, and V. Torczon.
Optimization by direct search: New perspectives on some classical and
modern methods.
SIAM Rev., 45:385-482, 2003.

References IV

» S. Oliver, C. Cartis, |. Kriest, S. F. B. Tett, and S. Khatiwala.
A derivative-free optimisation method for global ocean biogeochemical
models.
Geoscientific Model Development, 15(9):3537-3554, 2022.

» M. Porcelli and Ph. L. Toint.
BFO, a trainable derivative-free brute force optimizer for nonlinear
bound-constrained optimization and equilibrium computations with
continuous and discrete variables.
ACM Trans. Math. Software, 44:6:1-6:25, 2017.

» M. J. D. Powell.
The NEWUOA software for unconstrained optimization without
derivatives.
In G. Di Pillo and M. Roma, editors, Large-scale Nonlinear
Optimization, pages 255-297. Springer, Boston, 2006.

References V

» Michael JD Powell.
On search directions for minimization algorithms.
Mathematical programming, 4:193-201, 1973.

	Classical direct-search methods
	Blockwise direct-search methods
	Experiments
	Conclusions and future work
	Appendix

