
Blockwise Direct-Search Methods

Haitian Li

Department of Applied Mathematics
The Hong Kong Polytechnic University

Joint with Dr. Zaikun Zhang

ASA2024, Xinxiang, Henan

Derivative-free optimization (DFO): what and when?

What is DFO?

Solve an optimization problem

min
x∈Rn

f(x)

using function values but not derivatives (classical or generalized).

When do we use DFO?

Derivatives are not available even though f may be smooth.

“not available”: the evaluation is impossible or too expensive.

1 / 25

The applications of DFO

Circuit Design Photovoltaic Machine Learning

1 X. Zeng et al., BBGP-sDFO: Batch Bayesian and Gaussian Process
Enhanced Subspace Derivative Free Optimization for High-Dimensional
Analog Circuit Synthesis, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., 2023.

2 Shokralla et al., Parameter estimation of a photovoltaic array using
direct search optimization algorithm. J. Renew. Sustain. Energy, 2017.

3 Ghanbari and Scheinberg, Black-box optimization in machine learning
with trust region based derivative free algorithm, arXiv:1703.06925,
2017.

2 / 25

Two main classes of DFO methods

1 Direct-search methods based on

▶ simplex (Nelder-Mead method)

▶ directional search (BFO, PDS, NOMAD)

2 Model-based methods based on

▶ trust region (Powell’s methods)

▶ line search

Methods not covered by these two classes:

Bayesian optimization, genetic algorithms, etc.

3 / 25

Model-based methods v.s. Direct-search methods

Model-based Direct-search

Performance good less satisfactory

Implementation complicated relatively simple

1 Model-based methods:

▶ The optimization process is guided by models.
▶ The coupling between modeling and optimization makes the
implementation complicated.

2 Direct-search methods:

▶ No need to construct models.
▶ Iterate is decided by comparing the function values of samples.

4 / 25

An example of DFO solver: NEWUOA

A derivative-free solver for unconstrained problems

Developed by M.J.D. Powell

Widely used by engineers and scientists

The modernized version (https://github.com/libprima)

5 / 25

NEWUOA: performance is quite good

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

NEWUOA

FD-BFGS

FD-BFGS: Forward-finite-difference BFGS method.

6 / 25

NEWUOA: implementation and understanding is HARD

Framework of NEWUOA

From Powell (2006)

The development of NEWUOA has
taken nearly three years. The work
was very frustrating . . .

7 / 25

NEWUOA: implementation and understanding is HARD

Framework of NEWUOA

From Powell (2006)

The development of NEWUOA has
taken nearly three years. The work
was very frustrating . . .

7 / 25

Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Implementation and experiments

4. Conclusions and future work

Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Implementation and experiments

4. Conclusions and future work

A classical direct-search framework

What is direct search?

No explicit models are constructed based on function values.

Iterations are only decided according to function values.

Algorithm 1: Direct Search (DS) based on sufficient decrease

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α0 > 0, c > 0, a searching direction
set D ⊂ Rn.

for k = 0, 1, . . . do
if f(xk + αkd) < f(xk)− cρ(αk) for some d ∈ D then

Set xk+1 = xk + αkd and αk+1 = γαk.
else

Set xk+1 = xk and αk+1 = θαk.

8 / 25

Unsatisfactory performance of direct-search methods

Simple, but performs unsatisfactorily!

0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

NEWUOA

DS

(a) τ = 10−3

0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

NEWUOA

DS

(b) τ = 10−5

(Unconstrained CUTEst problems, 1 ≤ n ≤ 200)

9 / 25

Unsatisfactory performance of direct-search methods

Simple, but performs unsatisfactorily!

0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

NEWUOA

DS

(a) τ = 10−3

0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

NEWUOA

DS

(b) τ = 10−5

(Unconstrained CUTEst problems, 1 ≤ n ≤ 200)

9 / 25

Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Implementation and experiments

4. Conclusions and future work

Obvious improvement!

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

new-method

DS

(a) τ = 10−3

0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

new-method

DS

(b) τ = 10−5

(Unconstrained CUTEst problems, 1 ≤ n ≤ 200)

10 / 25

Performance of the new method we introduce

0 1 2 3
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

our-method

NEWUOA

(a) τ = 10−3

0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

our-method

NEWUOA

(b) τ = 10−5

(Unconstrained CUTEst problems, 1 ≤ n ≤ 200)

11 / 25

Flaws of the classical direct-search method

Algorithm 1: Direct Search (DS) based on sufficient decrease

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α0 > 0, c > 0, searching direction
set D ⊂ Rn.

for k = 0, 1, . . . do
if f(xk + αkd) < f(xk)− cρ(αk) for some d ∈ D then

Set xk+1 = xk + αkd and αk+1 = γαk.
else

Set xk+1 = xk and αk+1 = θαk.

How to improve it?

Divide the searching direction set into many blocks.

Each block has its own step size.

12 / 25

Flaws of the classical direct-search method

Algorithm 1: Direct Search (DS) based on sufficient decrease

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α0 > 0, c > 0, searching direction
set D ⊂ Rn.

for k = 0, 1, . . . do
if f(xk + αkd) < f(xk)− cρ(αk) for some d ∈ D then

Set xk+1 = xk + αkd and αk+1 = γαk.
else

Set xk+1 = xk and αk+1 = θαk.

How to improve it?

Divide the searching direction set into many blocks.

Each block has its own step size.

12 / 25

A cyclic framework of blockwise direct-search method

Algorithm 2: Cyclic Blockwise Direct Search (CBDS)

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α1
0, . . . , α

m
0 ∈ (0,∞), c > 0, a

searching direction set D = ∪m
i=1Di ⊂ Rn.

for k = 0, 1, . . . do
Set y1k = xk.
for i = 1, . . . ,m do

if f(yik + αi
kd

i
k) < f(yik)− cρ(αi

k) for some dik ∈ Di then
Set yi+1

k = yik + αi
kd

i
k and αi

k+1 = γαi
k.

else
Set yi+1

k = yik and αi
k+1 = θαi

k.

Set xk+1 = ym+1
k .

13 / 25

A simple example of the blockwise direct-search method

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

14 / 25

A simple example of the blockwise direct-search method

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

14 / 25

A simple example of the blockwise direct-search method

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

14 / 25

A simple example of the blockwise direct-search method

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

14 / 25

A simple example of the blockwise direct-search method

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

14 / 25

A simple example of the blockwise direct-search method

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

14 / 25

A simple example of the blockwise direct-search method

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

14 / 25

A simple example of the blockwise direct-search method

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

14 / 25

A simple example of the blockwise direct-search method

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

14 / 25

A simple example of the blockwise direct-search method

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

14 / 25

A simple example of the blockwise direct-search method

e1α1
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

14 / 25

Flexibility of the framework

The searching direction set: A positive spanning set.

The division of blocks: any way that “fits the problem”.

The scheme of visiting blocks: Cyclic (Gauss-Seidel), Jacobi, random.

Our implementation takes the following setting as the default:

D = {e1,−e1, . . . , en,−en}
Di = {ei,−ei}
Gauss-Seidel scheme

15 / 25

Flexibility of the framework

The searching direction set: A positive spanning set.

The division of blocks: any way that “fits the problem”.

The scheme of visiting blocks: Cyclic (Gauss-Seidel), Jacobi, random.

Our implementation takes the following setting as the default:

D = {e1,−e1, . . . , en,−en}
Di = {ei,−ei}
Gauss-Seidel scheme

15 / 25

Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Implementation and experiments

4. Conclusions and future work

Recapped

0 1 2 3
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

CBDS

NEWUOA

(a) τ = 10−3

0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

CBDS

NEWUOA

(b) τ = 10−5

(Unconstrained CUTEst problems, 1 ≤ n ≤ 200)

16 / 25

Comparison between BDS and existing DFO solvers

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

CBDS

FD-BFGS

(a) τ = 10−3

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

CBDS

FD-BFGS

(b) τ = 10−5

(Unconstrained CUTEst problems, 1 ≤ n ≤ 200)

17 / 25

BDS v.s. FD-BFGS

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

FD-BFGS

τ = 10−3

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

BDS

FD-BFGS

τ = 10−5

Set h =
√

(max |f |, 1)σ for FD-BFGS.

18 / 25

BDS v.s. NEWUOA

0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

BDS

NEWUOA

τ = 10−3

0 2 4
0

0.2

0.4

0.6

0.8

1

P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

BDS

NEWUOA

τ = 10−5

18 / 25

Self-tuning can improve the performance! 1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

CBDS-tuned

CBDS

τ = 10−3

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

CBDS-tuned

CBDS

τ = 10−5

In our experiments:

problem set: unconstrained problems from CUTEst

dimensions: 1 ≤ n ≤ 200

hyperparameters: γ, θ, c

default values: γ = 2, θ = 0.5, c = eps (machine precision)
1Motivated by BFO, A Note on Using Performance and Data Profiles for Training

Algorithms, ACM Transactions on Mathematical Software, 2019, Porcelli, M. and Toint,
Ph. L.

19 / 25

Self-tuning can improve the performance!

min
x∈Rn

f(PΩ(x)) + λr(x),

where

f(x): the difference of the integral in the performance profile

Ω: the feasible set for the hyperparameters

PΩ(x): the projection from x to Ω

λ: the penalty parameter

r(x): the residue of x in Ω

20 / 25

Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Implementation and experiments

4. Conclusions and future work

Structured nonsmooth problems

min
x∈Rn

f(x) + Φ(x)

f is smooth

Φ is nonsmooth but separable with respect to the blocks

Examples:

lp-regularized problems

bound-constrained problems

21 / 25

Is CBDS convergent?

We do not know the answer yet.

The analysis of cyclic methods is challenging.

Is it possible that the vanilla version of CBDS is not convergent?

Powell’s non-convergent example for cyclic coordinate descent method.

limiting behavior

22 / 25

Conclusions

1 Blockwise Direct Search (BDS) is a substantial improvement over the
classical direct search method (based on sufficient decrease)

2 BDS performs well in the following tests:

▶ Noise-free problems with a moderate size (6 ≤ n ≤ 200) and a
convergence tolerance that is not too small (10−1 ≤ τ ≤ 10−5)

▶ Noisy problems with a moderate noise level (10−3 ≤ σ ≤ 10−1) and
a convergence tolerance that is comparable with the noise level

3 BDS is robust under noise without any noise-handling techniques

4 BDS can be tuned to improve its performance

5 BDS is open-source and easy to use

23 / 25

Future work

Convergence and worst-case complexity (an adapted framework?)

Make use of the existing iterates (finite difference or interpolation)

Extend our implementation to other languages (Python, Julia, etc.)

BDS on GitHub

tested continuously via GitHub Actions

tested under different platforms

Thank you!

24 / 25

https://github.com/blockwise-direct-search

References I

▶ C. Audet and J. E. Dennis Jr.
Analysis of generalized pattern searches.
SIAM J. Optim., 13:889–903, 2002.

▶ C. Audet and J. E. Dennis Jr.
Mesh adaptive direct search algorithms for constrained optimization.
SIAM J. Optim., 17:188–217, 2006.

▶ C. Audet and D. Orban.
Finding optimal algorithmic parameters using derivative-free
optimization.
SIAM Journal on Optimization, 17(3):642–664, 2006.

▶ A. S. Bandeira, K. Scheinberg, and L. N. Vicente.
Convergence of trust-region methods based on probabilistic models.
SIAM J. Optim., 24:1238–1264, 2014.

References II

▶ N. I. M. Gould, D. Orban, and Ph. L. Toint.
CUTEst: a constrained and unconstrained testing environment with safe
threads for mathematical optimization.
Comput. Optim. Appl., 60:545–557, 2015.

▶ S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang.
Direct search based on probabilistic descent.
SIAM J. Optim., 25:1515–1541, 2015.

▶ Tianchen Gu, Wangzhen Li, Aidong Zhao, Zhaori Bi, Xudong Li, Fan
Yang, Changhao Yan, Wenchuang Hu, Dian Zhou, Tao Cui, et al.
Bbgp-sdfo: Batch bayesian and gaussian process enhanced subspace
derivative free optimization for high-dimensional analog circuit
synthesis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2023.

References III

▶ T. G. Kolda, R. M. Lewis, and V. Torczon.
Optimization by direct search: New perspectives on some classical and
modern methods.
SIAM Rev., 45:385–482, 2003.

▶ M. Porcelli and Ph. L. Toint.
BFO, a trainable derivative-free brute force optimizer for nonlinear
bound-constrained optimization and equilibrium computations with
continuous and discrete variables.
ACM Trans. Math. Software, 44:6:1–6:25, 2017.

▶ M. J. D. Powell.
The NEWUOA software for unconstrained optimization without
derivatives.
In G. Di Pillo and M. Roma, editors, Large-scale Nonlinear
Optimization, pages 255–297. Springer, Boston, 2006.

References IV

▶ Michael JD Powell.
On search directions for minimization algorithms.
Mathematical programming, 4:193–201, 1973.

	Classical direct-search methods
	Blockwise direct-search methods
	Implementation and experiments
	Conclusions and future work
	Appendix

