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Derivative-free optimization (DFO): what and why?

What is DFO?

Solve an optimization problem

min
x∈Rn

f(x)

using function values but not derivatives (classical or generalized).

Why do we use DFO?

Derivatives are not available even though f may be smooth.

“not available”: the evaluation is impossible or too expensive.
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Examples of DFO problems

Circuit Design Nuclear Energy Machine Learning

1 Ciccazzo et al., Derivative-free robust optimization for circuit design. J.
Optim. Theory Appl., 2015.

2 More et al., Nuclear energy density optimization. Phys. Rev., 2010.

3 Ghanbari and Scheinberg, Black-box optimization in machine learning
with trust region based derivative free algorithm, arXiv:1703.06925,
2017.
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A powerful DFO solver: NEWUOA

A derivative-free solver for unconstrained problems

Developed by M.J.D. Powell

Widely used by engineers and scientists
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NEWUOA: performance is excellent
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NEWUOA v.s. simplex

(Unconstrained CUTEst problems, 6 ≤ n ≤ 100)
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NEWUOA: implementation and understanding is HARD

Outline of NEWUOA’s code

From Powell (2006)

The development of NEWUOA has taken nearly three years. The work was
very frustrating . . .
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Performance of the new method we introduce
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(Unconstrained CUTEst problems, 6 ≤ n ≤ 100)

Six months v.s. Three frustrating years!

492 lines of MATLAB code v.s. 2497 lines of Fortran code!
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A classical direct-search framework

What is direct search?

Not construct any models of objective functions explicitly.

Only relying on simple comparisons to decide the point to visit.

Algorithm 1: Direct Search (DS)

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α0 ∈ (0,∞), and searching
set D ⊂ Rn.

for k = 0, 1, . . . do
if f(xk + αkd) < f(xk)− ρ(αk) for some d ∈ D then

Set αk+1 = γαk and xk+1 = xk + αkd.
else

Set αk+1 = θαk and xk+1 = xk.

Simple, but performs poorly!
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Unsatisfactory performance of direct-search methods

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

NEWUOA

DS

τ = 10−2

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

NEWUOA

DS

τ = 10−4

8 / 17



Flaws of the classical direct-search method

One step size for every direction is unfair.

Rewarding “bad” directions does not make sense.

How to improve it?

Divide the searching set into many blocks.

Each block has its own step size.

9 / 17



Flaws of the classical direct-search method

One step size for every direction is unfair.

Rewarding “bad” directions does not make sense.

How to improve it?

Divide the searching set into many blocks.

Each block has its own step size.

9 / 17



Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Implementation and Experiments

4. Conclusions and Future work



The framework of blockwise direct-search method

Algorithm 2: Cyclic Blockwise Direct Search (CBDS)

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α1
0, . . . , α

m
0 ∈ (0,∞), and searching

set D1, . . . ,Dm ⊂ Rn.
for k = 0, 1, . . . do

Set y1k = xk.
for i = 1, . . . ,m do

if f(yik + αi
kd

i
k) < f(yik)− ρ(αi

k) for some dik ∈ Di then
Set αi

k+1 = γαi
k and yi+1

k = yik + αi
kd

i
k.

else
Set αi

k+1 = θαi
k and yi+1

k = yik.

Set xk+1 = ym+1
k .
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Why it is complicated?

There are so many choices needed to select carefully.

What is the best order to visit the blocks?

Gauss-Seidel

What is the best searching set for each block?

Coordinate directions
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A simple example of the blockwise direct-search method
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Comparison between BDS and existing DFO solvers

Observed value:

f̃(x) =

{
f(x), there is no noise,
f(x)[1 + ϵ(x)], there is noise,

where ϵ(x) ∼ N (0, σ2).
In our experiments:

problem set: unconstrained problems from CUTEst

dimensions: 6 ≤ n ≤ 100

noise level: σ = 10−3

budget: 1000n function evaluations

number of random experiments: 10
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Comparison between BDS and existing DFO solvers
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Comparison between BDS and existing DFO solvers
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Battle-test!

Battle-test, is necessary!

15 / 17



Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Implementation and Experiments

4. Conclusions and Future work



Is CBDS convergent?

We do not know the answer yet.

The analysis of cyclic methods is challenging.

Is it possible that the vanilla version of CBDS is not convergent?
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Conclusions

What we have achieved:

Our project is open-source and easy to use

Our method is efficient and adaptive to noise automatically

Future work:

Convergence and worst-case complexity (of an adapted framework?)

Finite difference or interpolation using existing iterates

Apply our algorithm on constrained problems (like bound constraints)

Apply our algorithm on other programming languages (like Python)

BDS homepage: github.com/blockwise-direct-search

Thank you!
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