
Blockwise Direct-Search Methods

Haitian Li

Department of Applied Mathematics
The Hong Kong Polytechnic University

The 9th Graduate Forum of Mathematical Programming Branch of Operations Research of
China

Superivsor: Dr. Zaikun Zhang and Prof. Xiaojun Chen

November 4, 2023



Derivative-free optimization (DFO): what and why?

What is DFO?

Solve an optimization problem

min
x∈Rn

f(x)

using function values but not derivatives (classical or generalized).

Why do we use DFO?

Derivatives are not available even though f may be smooth.

“not available”: the evaluation is impossible or too expensive.

1 / 17



Examples of DFO problems

Circuit Design Nuclear Energy Machine Learning

1 Ciccazzo et al., Derivative-free robust optimization for circuit design. J.
Optim. Theory Appl., 2015.

2 More et al., Nuclear energy density optimization. Phys. Rev., 2010.

3 Ghanbari and Scheinberg, Black-box optimization in machine learning
with trust region based derivative free algorithm, arXiv:1703.06925,
2017.

2 / 17



A powerful DFO solver: NEWUOA

A derivative-free solver for unconstrained problems

Developed by M.J.D. Powell

Widely used by engineers and scientists

3 / 17



NEWUOA: performance is excellent

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

fminunc

NEWUOA

NEWUOA v.s. BFGS

0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

fminsearch

NEWUOA

NEWUOA v.s. simplex

(Unconstrained CUTEst problems, 6 ≤ n ≤ 100)

4 / 17



NEWUOA: implementation and understanding is HARD

Outline of NEWUOA’s code

From Powell (2006)

The development of NEWUOA has taken nearly three years. The work was
very frustrating . . .

5 / 17



NEWUOA: implementation and understanding is HARD

Outline of NEWUOA’s code

From Powell (2006)

The development of NEWUOA has taken nearly three years. The work was
very frustrating . . .

5 / 17



Performance of the new method we introduce

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

our method

NEWUOA

(a) τ = 10−2

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

our method

NEWUOA

(b) τ = 10−4

(Unconstrained CUTEst problems, 6 ≤ n ≤ 100)

Six months v.s. Three frustrating years!

492 lines of MATLAB code v.s. 2497 lines of Fortran code!

6 / 17



Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Implementation and Experiments

4. Conclusions and Future work



Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Implementation and Experiments

4. Conclusions and Future work



A classical direct-search framework

What is direct search?

Not construct any models of objective functions explicitly.

Only relying on simple comparisons to decide the point to visit.

Algorithm 1: Direct Search (DS)

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α0 ∈ (0,∞), and searching
set D ⊂ Rn.

for k = 0, 1, . . . do
if f(xk + αkd) < f(xk)− ρ(αk) for some d ∈ D then

Set αk+1 = γαk and xk+1 = xk + αkd.
else

Set αk+1 = θαk and xk+1 = xk.

Simple, but performs poorly!

7 / 17



A classical direct-search framework

What is direct search?

Not construct any models of objective functions explicitly.

Only relying on simple comparisons to decide the point to visit.

Algorithm 1: Direct Search (DS)

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α0 ∈ (0,∞), and searching
set D ⊂ Rn.

for k = 0, 1, . . . do
if f(xk + αkd) < f(xk)− ρ(αk) for some d ∈ D then

Set αk+1 = γαk and xk+1 = xk + αkd.
else

Set αk+1 = θαk and xk+1 = xk.

Simple, but performs poorly!
7 / 17



Unsatisfactory performance of direct-search methods

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

NEWUOA

DS

τ = 10−2

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

NEWUOA

DS

τ = 10−4

8 / 17



Flaws of the classical direct-search method

One step size for every direction is unfair.

Rewarding “bad” directions does not make sense.

How to improve it?

Divide the searching set into many blocks.

Each block has its own step size.

9 / 17



Flaws of the classical direct-search method

One step size for every direction is unfair.

Rewarding “bad” directions does not make sense.

How to improve it?

Divide the searching set into many blocks.

Each block has its own step size.

9 / 17



Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Implementation and Experiments

4. Conclusions and Future work



The framework of blockwise direct-search method

Algorithm 2: Cyclic Blockwise Direct Search (CBDS)

Input: x0 ∈ Rn, 0 < θ < 1 ≤ γ, α1
0, . . . , α

m
0 ∈ (0,∞), and searching

set D1, . . . ,Dm ⊂ Rn.
for k = 0, 1, . . . do

Set y1k = xk.
for i = 1, . . . ,m do

if f(yik + αi
kd

i
k) < f(yik)− ρ(αi

k) for some dik ∈ Di then
Set αi

k+1 = γαi
k and yi+1

k = yik + αi
kd

i
k.

else
Set αi

k+1 = θαi
k and yi+1

k = yik.

Set xk+1 = ym+1
k .

10 / 17



Why it is complicated?

There are so many choices needed to select carefully.

What is the best order to visit the blocks?

Gauss-Seidel

What is the best searching set for each block?

Coordinate directions

11 / 17



Why it is complicated?

There are so many choices needed to select carefully.

What is the best order to visit the blocks?

Gauss-Seidel

What is the best searching set for each block?

Coordinate directions

11 / 17



Why it is complicated?

There are so many choices needed to select carefully.

What is the best order to visit the blocks?

Gauss-Seidel

What is the best searching set for each block?

Coordinate directions

11 / 17



Why it is complicated?

There are so many choices needed to select carefully.

What is the best order to visit the blocks?

Gauss-Seidel

What is the best searching set for each block?

Coordinate directions

11 / 17



Why it is complicated?

There are so many choices needed to select carefully.

What is the best order to visit the blocks?

Gauss-Seidel

What is the best searching set for each block?

Coordinate directions

11 / 17



A simple example of the blockwise direct-search method

e1α
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 17



A simple example of the blockwise direct-search method

e1α
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 17



A simple example of the blockwise direct-search method

e1α
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 17



A simple example of the blockwise direct-search method

e1α
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 17



A simple example of the blockwise direct-search method

e1α
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 17



A simple example of the blockwise direct-search method

e1α
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 17



A simple example of the blockwise direct-search method

e1α
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 17



A simple example of the blockwise direct-search method

e1α
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 17



A simple example of the blockwise direct-search method

e1α
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 17



A simple example of the blockwise direct-search method

e1α
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 17



A simple example of the blockwise direct-search method

e1α
−e1

e2

−e2

D1 = {e1,−e1} and D2 = {e2,−e2}

x

12 / 17



Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Implementation and Experiments

4. Conclusions and Future work



Comparison between BDS and existing DFO solvers

Observed value:

f̃(x) =

{
f(x), there is no noise,
f(x)[1 + ϵ(x)], there is noise,

where ϵ(x) ∼ N (0, σ2).
In our experiments:

problem set: unconstrained problems from CUTEst

dimensions: 6 ≤ n ≤ 100

noise level: σ = 10−3

budget: 1000n function evaluations

number of random experiments: 10

13 / 17



Comparison between BDS and existing DFO solvers

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

CBDS

fminsearch

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

CBDS

fminsearch

14 / 17



Comparison between BDS and existing DFO solvers

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

CBDS

fminunc

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

CBDS

fminunc

14 / 17



Comparison between BDS and existing DFO solvers

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

CBDS

NEWUOA

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

CBDS

NEWUOA

14 / 17



Comparison between BDS and existing DFO solvers

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

CBDS

BFO

0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e
 p

ro
fi
le

CBDS

BFO

14 / 17



Battle-test!

Battle-test, is necessary!

15 / 17



Outline

1. Classical direct-search methods

2. Blockwise direct-search methods

3. Implementation and Experiments

4. Conclusions and Future work



Is CBDS convergent?

We do not know the answer yet.

The analysis of cyclic methods is challenging.

Is it possible that the vanilla version of CBDS is not convergent?

16 / 17



Conclusions

What we have achieved:

Our project is open-source and easy to use

Our method is efficient and adaptive to noise automatically

Future work:

Convergence and worst-case complexity (of an adapted framework?)

Finite difference or interpolation using existing iterates

Apply our algorithm on constrained problems (like bound constraints)

Apply our algorithm on other programming languages (like Python)

BDS homepage: github.com/blockwise-direct-search

Thank you!
17 / 17

https://github.com/blockwise-direct-search
github.com/blockwise-direct-search


References I

▶ C. Audet and J. E. Dennis Jr.
Analysis of generalized pattern searches.
SIAM J. Optim., 13:889–903, 2002.

▶ C. Audet and J. E. Dennis Jr.
Mesh adaptive direct search algorithms for constrained optimization.
SIAM J. Optim., 17:188–217, 2006.

▶ A. S. Bandeira, K. Scheinberg, and L. N. Vicente.
Convergence of trust-region methods based on probabilistic models.
SIAM J. Optim., 24:1238–1264, 2014.

▶ A. Ciccazzo, V. Latorre, G. Liuzzi, S. Lucidi, and F. Rinaldi.
Derivative-free robust optimization for circuit design.
J. Optim. Theory Appl., 164:842–861, 2015.



References II

▶ H. Ghanbari and K. Scheinberg.
Black-box optimization in machine learning with trust region based
derivative free algorithm.
arXiv:1703.06925, 2017.

▶ N. I. M. Gould, D. Orban, and Ph. L. Toint.
CUTEst: a constrained and unconstrained testing environment with safe
threads for mathematical optimization.
Comput. Optim. Appl., 60:545–557, 2015.

▶ S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang.
Direct search based on probabilistic descent.
SIAM J. Optim., 25:1515–1541, 2015.



References III

▶ T. G. Kolda, R. M. Lewis, and V. Torczon.
Optimization by direct search: New perspectives on some classical and
modern methods.
SIAM Rev., 45:385–482, 2003.

▶ M. Kortelainen, T. Lesinski, J. More, W. Nazarewicz, J. Sarich,
N. Schunck, M. V. Stoitsov, and S. M. Wild.
Nuclear energy density optimization.
Phys. Rev. C, 82(2):024313, 2010.

▶ M. J. D. Powell.
The NEWUOA software for unconstrained optimization without
derivatives.
In G. Di Pillo and M. Roma, editors, Large-scale Nonlinear
Optimization, pages 255–297. Springer, Boston, 2006.


	Classical direct-search methods
	Blockwise direct-search methods
	Implementation and Experiments
	Conclusions and Future work
	Appendix

